Abstract

Nanocoolants are engineered colloidal suspensions of nanoparticles in a conventional coolant (water–ethylene glycol). Use of metals and metallic oxide nanofluids at concentrations greater than 0.01 vol % has been studied in greater detail compared to functionalized graphene nanofluids. In the present work, an experimental investigation is carried out on an automobile radiator by changing the conventional coolant to reduced graphene oxide (RGO) nanocoolant. The present study focuses on the effect of ultralow nanoparticle concentration (0.002–0.006 vol %), Reynolds number of hot coolant (80–170), Reynolds number of air (210–270), and inlet temperature of hot coolant (40 °C and 60 °C). The effect of these parameters on the performance of the radiator is measured in terms of convective heat transfer coefficient (CHTC), Nusselt number, friction factor, and effectiveness. Results indicate that at 0.006 vol % concentration, there is a maximum increase of 100.5% and 111%, respectively, in CHTC and effectiveness, besides a reduction in friction factor. RGO nanocoolant offers great scope for reducing the radiator size and increasing its performance.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Argonne National Lab
,
Lemont, IL
, Report No.
ANL/MSD/CP-84938
; CONF-951135-29.https://www.osti.gov/biblio/196525-enhancing-thermal-conductivity-fluids-nanoparticles
2.
Said
,
Z.
,
Hachicha
,
A. A.
,
Aberoumand
,
S.
,
Yousef
,
B. A. A.
,
Sayed
,
E. T.
, and
Bellos
,
E.
,
2021
, “
Recent Advances on Nanofluids for Low to Medium Temperature Solar Collectors: Energy, Exergy, Economic Analysis and Environmental Impact
,”
Prog. Energy Combust. Sci.
,
84
, p.
100898
.10.1016/j.pecs.2020.100898
3.
Alawi
,
O. A.
,
Kamar
,
H. M.
,
Mallah
,
A. R.
,
Mohammed
,
H. A.
,
Kazi
,
S. N.
,
Che Sidik
,
N. A.
, and
Najafi
,
G.
,
2021
, “
Nanofluids for Flat Plate Solar Collectors: Fundamentals and Applications
,”
J. Cleaner Prod.
,
291
, p.
125725
.10.1016/j.jclepro.2020.125725
4.
Eltaweel
,
M.
,
Abdel-Rehim
,
A. A.
, and
Attia
,
A. A. A.
,
2021
, “
A Comparison Between Flat-Plate and Evacuated Tube Solar Collectors in Terms of Energy and Exergy Analysis by Using Nanofluid
,”
Appl. Therm. Eng.
,
186
, p.
116516
.10.1016/j.applthermaleng.2020.116516
5.
Sheikholeslami
,
M.
,
Farshad
,
S. A.
,
Ebrahimpour
,
Z.
, and
Said
,
Z.
,
2021
, “
Recent Progress on Flat Plate Solar Collectors and Photovoltaic Systems in the Presence of Nanofluid: A Review
,”
J. Cleaner Prod.
,
293
, p.
126119
.10.1016/j.jclepro.2021.126119
6.
Coumaressin
,
T.
, and
Palaniradja
,
K.
,
2014
, “
PerformanceAnalysis of a Refrigeration System Using Nano Fluid
,”
Int. J. Adv. Mech. Eng.
,
4
(
4
), pp.
459
470
.https://www.ripublication.com/ijame-spl/ijamev4n4spl_14.pdf
7.
Li
,
Z. X.
,
Renault
,
F. L.
,
Gómez
,
A. O. C.
,
Sarafraz
,
M. M.
,
Khan
,
H.
,
Safaei
,
M. R.
, and
Filho
,
E. P. B.
,
2019
, “
Nanofluids as Secondary Fluid in the Refrigeration System: Experimental Data, Regression, ANFIS, and NN Modeling
,”
Int. J. Heat Mass Transfer
,
144
, p.
118635
.10.1016/j.ijheatmasstransfer.2019.118635
8.
Bhattad
,
A.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2018
, “
Improving the Performance of Refrigeration Systems by Using Nanofluids: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3656
3669
.10.1016/j.rser.2017.10.097
9.
Maheshwary
,
P. B.
,
Handa
,
C. C.
, and
Nemade
,
K. R.
,
2017
, “
A Comprehensive Study of Effect of Concentration, Particle Size and Particle Shape on Thermal Conductivity of Titania/Water Based Nanofluid
,”
Appl. Therm. Eng.
,
119
, pp.
79
88
.10.1016/j.applthermaleng.2017.03.054
10.
Subhedar
,
D. G.
,
Ramani
,
B. M.
, and
Gupta
,
A.
,
2018
, “
Experimental Investigation of Heat Transfer Potential of Al2O3/Water-Mono Ethylene Glycol Nanofluids as a Car Radiator Coolant
,”
Case Stud. Therm. Eng.
,
11
, pp.
26
34
.10.1016/j.csite.2017.11.009
11.
Selvam
,
C.
,
Lal
,
D. M.
, and
Harish
,
S.
,
2017
, “
Enhanced Heat Transfer Performance of an Automobile Radiator With Graphene Based Suspensions
,”
Appl. Therm. Eng.
,
123
, pp.
50
60
.10.1016/j.applthermaleng.2017.05.076
12.
Selvam
,
C.
,
Solaimalai Raja
,
R.
,
Lal
,
D. M.
, and
Harish
,
S.
,
2017
, “
Overall Heat Transfer Coefficient Improvement of an Automobile Radiator With Graphene Based Suspensions
,”
Int. J. Heat Mass Transfer
,
115
, pp.
580
588
.10.1016/j.ijheatmasstransfer.2017.08.071
13.
Oliveira
,
G. A.
,
Cardenas Contreras
,
E. M.
, and
Bandarra Filho
,
E. P.
,
2017
, “
Experimental Study on the Heat Transfer of MWCNT/Water Nanofluid Flowing in a Car Radiator
,”
Appl. Therm. Eng.
,
111
, pp.
1450
1456
.10.1016/j.applthermaleng.2016.05.086
14.
Ponangi
,
B. R.
,
Krishna
,
V.
, and
Seetharamu
,
K. N.
,
2021
, “
Performance of Compact Heat Exchanger in the Presence of Novel Hybrid Graphene Nanofluids
,”
Int. J. Therm. Sci.
,
165
, p.
106925
.10.1016/j.ijthermalsci.2021.106925
15.
Sumanth
,
S.
,
Babu Rao
,
P.
,
Krishna
,
V.
,
Seetharam
,
T. R.
, and
Seetharamu
,
K. N.
,
2018
, “
Effect of Carboxyl Graphene Nanofluid on Automobile Radiator Performance
,”
Heat Transfer—Asian Res.
,
47
(
4
), pp.
669
683
.10.1002/htj.21335
16.
Hussein
,
A. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Sharma
,
K. V.
,
2014
, “
Heat Transfer Augmentation of a Car Radiator Using Nanofluids
,”
Heat Mass Transfer
,
50
(
11
), pp.
1553
1561
.10.1007/s00231-014-1369-2
17.
Abbas
,
F.
,
Ali
,
H. M.
,
Shah
,
T. R.
,
Babar
,
H.
,
Janjua
,
M. M.
,
Sajjad
,
U.
, and
Amer
,
M.
,
2020
, “
Nanofluid: Potential Evaluation in Automotive Radiator
,”
J. Mol. Liq.
,
297
, p.
112014
.10.1016/j.molliq.2019.112014
18.
Murshed
,
S. S.
, and
Nieto de Castro
,
C. A.
,
2016
, “
Conduction and Convection Heat Transfer Characteristics of Ethylene Glycol Based Nanofluids—A Review
,”
Appl. Energy
,
184
, pp.
681
695
.10.1016/j.apenergy.2016.11.017
19.
Eggers
,
J. R.
, and
Kabelac
,
S.
,
2016
, “
Nanofluids Revisited
,”
Appl. Therm. Eng.
,
106
, pp.
1114
1126
.10.1016/j.applthermaleng.2016.06.100
20.
Kumar
,
A.
, and
Subudhi
,
S.
,
2019
, “
Preparation, Characterization and Heat Transfer Analysis of Nanofluids Used for Engine Cooling
,”
Appl. Therm. Eng.
,
160
, p.
114092
.10.1016/j.applthermaleng.2019.114092
21.
Pordanjani
,
A. H.
,
Aghakhani
,
S.
,
Afrand
,
M.
,
Mahmoudi
,
B.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2019
, “
An Updated Review on Application of Nanofluids in Heat Exchangers for Saving Energy
,”
Energy Convers. Manage.
,
198
, p.
111886
.10.1016/j.enconman.2019.111886
22.
Sidik
,
N. A. C.
,
Witri Mohd Yazid
,
M. N. A.
, and
Mamat
,
R.
,
2017
, “
Recent Advancement of Nanofluids in Engine Cooling System
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
137
144
.10.1016/j.rser.2016.10.057
23.
Mangrulkar
,
C. K.
,
Dhoble
,
A. S.
,
Chamoli
,
S.
,
Gupta
,
A.
, and
Gawande
,
V. B.
,
2019
, “
Recent Advancement in Heat Transfer and Fluid Flow Characteristics in Cross Flow Heat Exchangers
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109220
.10.1016/j.rser.2019.06.027
24.
Zhao
,
N.
,
Li
,
S.
, and
Yang
,
J.
,
2016
, “
A Review on Nanofluids: Data-Driven Modeling of Thermal-physical Properties and the Application in Automotive Radiator
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
596
616
.10.1016/j.rser.2016.08.029
25.
Said
,
Z.
,
El Haj Assad
,
M.
,
Hachicha
,
A. A.
,
Bellos
,
E.
,
Abdelkareem
,
M. A.
,
Alazaizeh
,
D. Z.
, and
Yousef
,
B. A. A.
,
2019
, “
Enhancing the Performance of Automotive Radiators Using Nanofluids
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
183
194
.10.1016/j.rser.2019.05.052
26.
Naveen
,
N. S.
, and
Kishore
,
P. S.
,
2020
, “
Experimental Investigation on Heat Transfer Parameters of an Automotive Car Radiator Using Graphene/Water-Ethylene Glycol Coolant
,”
J. Dispersion Sci. Technol.
, pp.
1
13
. 10.1080/01932691.2020.1840999
27.
Reza Seyf
,
H.
,
Kim
,
S.
, and
Zhang
,
Y.
,
2013
, “
Thermal Performance of an Al2O3–Water Nanofluid Pulsating Heat Pipe
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
031005
.10.1115/1.4024145
28.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
11
), pp.
1213
1216
.10.1115/1.2352789
29.
Pradeep
,
G. V.
, and
Rama Narasimha
,
K.
,
2019
, “
Experimental Investigations on the Thermal Performance of a Single Closed Loop Pulsating Heat Pipe Using TiO2 Nanofluid
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
9
), p.
091806
.10.1115/1.4041953
30.
Choi
,
S. U. S.
,
2009
, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
3
), p.
033106
.10.1115/1.3056479
31.
Pinto
,
R. V.
, and
Fiorelli
,
F. A. S.
,
2016
, “
Review of the Mechanisms Responsible for Heat Transfer Enhancement Using Nanofluids
,”
Appl. Therm. Eng.
,
108
, pp.
720
739
.10.1016/j.applthermaleng.2016.07.147
32.
Bahiraei
,
M.
, and
Heshmatian
,
S.
,
2019
, “
Graphene Family Nanofluids: A Critical Review and Future Research Directions
,”
Energy Convers. Manage.
,
196
, pp.
1222
1256
.10.1016/j.enconman.2019.06.076
33.
Arshad
,
A.
,
Jabbal
,
M.
,
Yan
,
Y.
, and
Reay
,
D.
,
2019
, “
A Review on Graphene Based Nanofluids: Preparation, Characterization and Applications
,”
J. Mol. Liq.
,
279
, pp.
444
484
.10.1016/j.molliq.2019.01.153
34.
Barai
,
D. P.
,
Bhanvase
,
B. A.
, and
Sonawane
,
S. H.
,
2020
, “
A Review on Graphene Derivatives-Based Nanofluids: Investigation on Properties and Heat Transfer Characteristics
,”
Ind. Eng. Chem. Res.
,
59
(
22
), pp.
10231
10277
.10.1021/acs.iecr.0c00865
35.
Hamzah
,
M. H.
,
Sidik
,
N. A. C.
,
Ken
,
T. L.
,
Mamat
,
R.
, and
Najafi
,
G.
,
2017
, “
Factors Affecting the Performance of Hybrid Nanofluids: A Comprehensive Review
,”
Int. J. Heat Mass Transfer
,
115
, pp.
630
646
.10.1016/j.ijheatmasstransfer.2017.07.021
36.
Kumar
,
D. D.
, and
Valan Arasu
,
A.
,
2018
, “
A Comprehensive Review of Preparation, Characterization, Properties and Stability of Hybrid Nanofluids
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1669
1689
.10.1016/j.rser.2017.05.257
37.
Huminic
,
G.
, and
Huminic
,
A.
,
2018
, “
Hybrid Nanofluids for Heat Transfer Applications—A State-of-the-Art Review
,”
Int. J. Heat Mass Transfer
,
125
, pp.
82
103
.10.1016/j.ijheatmasstransfer.2018.04.059
38.
Chawhan
,
S. S.
,
Barai
,
D. P.
, and
Bhanvase
,
B. A.
,
2020
, “
Sonochemical Preparation of rGO-SnO2 Nanocomposite and Its Nanofluids: Characterization, Thermal Conductivity, Rheological and Convective Heat Transfer Investigation
,”
Mater. Today Commun.
,
23
, p.
101148
.10.1016/j.mtcomm.2020.101148
39.
Sarode
,
H. A.
,
Barai
,
D. P.
,
Bhanvase
,
B. A.
,
Ugwekar
,
R. P.
, and
Saharan
,
V.
,
2020
, “
Investigation on Preparation of Graphene oxide-CuO Nanocomposite Based Nanofluids With the Aid of Ultrasound Assisted Method for Intensified Heat Transfer Properties
,”
Mater. Chem. Phys.
,
251
, p.
123102
.10.1016/j.matchemphys.2020.123102
40.
Koshta
,
N. R.
,
Bhanvase
,
B. A.
,
Chawhan
,
S. S.
,
Barai
,
D. P.
, and
Sonawane
,
S. H.
,
2020
, “
Investigation on the Thermal Conductivity and Convective Heat Transfer Enhancement in Helical Coiled Heat Exchanger Using Ultrasonically Prepared rGO–TiO2 Nanocomposite-Based Nanofluids
,”
Indian Chem. Eng.
,
62
(
2
), pp.
202
215
.10.1080/00194506.2019.1658545
41.
Barai
,
D. P.
,
Bhanvase
,
B. A.
, and
Saharan
,
V. K.
,
2019
, “
Reduced Graphene oxide-Fe3O4 Nanocomposite Based Nanofluids: Study on Ultrasonic Assisted Synthesis, Thermal Conductivity, Rheology, and Convective Heat Transfer
,”
Ind. Eng. Chem. Res.
,
58
(
19
), pp.
8349
8369
.10.1021/acs.iecr.8b05733
42.
Mandhare
,
H.
,
Barai
,
D. P.
,
Bhanvase
,
B. A.
, and
Saharan
,
V. K.
,
2020
, “
Preparation and Thermal Conductivity Investigation of Reduced Graphene oxide-ZnO Nanocomposite-Based Nanofluid Synthesised by Ultrasound-Assisted Method
,”
Mater. Res. Innovations
,
24
(
7
), pp.
433
441
.10.1080/14328917.2020.1721809
43.
Singh
,
K.
,
Barai
,
D. P.
,
Chawhan
,
S. S.
,
Bhanvase
,
B. A.
, and
Saharan
,
V. K.
,
2021
, “
Synthesis, Characterization and Heat Transfer Study of Reduced Graphene oxide-Al2O3 Nanocomposite Based Nanofluids: Investigation on Thermal Conductivity and Rheology
,”
Mater. Today Commun.
,
26
, p.
101986
.10.1016/j.mtcomm.2020.101986
44.
Dehghanzad
,
B.
,
Razavi Aghjeh
,
M. K.
,
Rafeie
,
O.
,
Tavakoli
,
A.
, and
Oskooie
,
A. J.
,
2016
, “
Synthesis and Characterization of Graphene and Functionalized Graphene Via Chemical and Thermal Treatment Methods
,”
RSC Adv.
,
6
(
5
), pp.
3578
3585
.10.1039/C5RA19954A
45.
BTCORP
,
2021
, “
Reduced Graphene Oxide BTGraph®-RGO Product Code G4: (CAS Number: 7782-42-5)
,” BTCORP, accessed Jan. 20,
2021
, https://www.bt-corp.co/reduced-graphene-oxide/
46.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.https://scholar.google.com/scholar_lookup?title=Describing%20uncertainties%20in%20single-sample%20experiments&author=S.J.%20Kine&publication_year=1953&pages=3-8
You do not currently have access to this content.