Abstract

In this paper, linear and nonlinear properties of thermohaline convection at the onset with the stress-free boundary conditions are investigated using perturbation analysis relevant to oceanic water and ground water. The nonlinear governing equations are expanded using linear stability solutions, related to the temperature, motion, and concentration in the series of nonhomogeneous linear equations. The proposed method yields finite amplitude steady solutions by means of successive approximations. The rate of heat transfer is studied up to sixth-order using an expansion of thermal Rayleigh number (Ra1) as proposed by Kuo (1961, “Solution of the Non-Linear Equations of the Cellular Convection and Heat Transport,” J. Fluid Mech., 10(04), pp. 611–630). The heat transfer rate of the system depends on Lewis number, Prandtl number, and thermal (Ra1) as well as solutal (Ra2) Rayleigh number. The result for the heat transport (N) in the system fits a power law of exponent of 0.288, i.e., N(Ra1/Ra1o)0.288 for Ra2=0, Pr=10 and Ra1>4Ra1o. This power law of exponent value of 0.288 is close to the results (0.25) obtained by Kuo (1961, “Solution of the Non-Linear Equations of the Cellular Convection and Heat Transport,” J. Fluid Mech., 10(04), pp. 611–630), and also to the experimental results for laminar convection by Jakob (1949, Heat Transfer, Vol. 1, Wiley, New York.). The characteristics of heat transfer and flow field results are depicted by means of isotherms and streamlines, respectively. The path of convective heat transport and the comprehensive analysis of energy distribution by means of heatlines are explained using the concept of heat function. Laminar natural convection using entropy generation analysis due to fluid friction and heat transfer is also being studied. The numerical simulation for total entropy generation has been carried out for Prandtl numbers pertaining to ground water for different Ra1 and Ra2.

References

1.
Radko
,
T.
,
2013
,
Double-Diffusive Convection
,
Cambridge University Press
, Cambridge, UK.
2.
Post
,
V. E. A.
, and
Prommer
,
H.
,
2007
, “
Multicomponent Reactive Transport Simulation of the Elder Problem: Effects of Chemical Reactions on Salt Plume Development
,”
Water Resour. Res.
,
43
(
10
), p.
W10404
.10.1029/2006WR005630
3.
Hoteit
,
H.
, and
Firoozabadi
,
A.
,
2017
, “
Modeling of Multicomponent Diffusions and Natural Convection in Unfractured and Fractured Media by Discontinuous Galerkin and Mixed Methods
,”
Int. J. Numer. Meth. Eng.
,
114
(
5
), pp.
535
556
.10.1002/nme.5753
4.
Huppert
,
H. E.
, and
Turner
,
J. S.
,
1981
, “
Double-Diffusive Convection
,”
J. Fluid Mech.
,
106
(
1
), pp.
299
329
.10.1017/S0022112081001614
5.
Beaume
,
C.
,
Rucklidge
,
A.
, and
Tumelty
,
J.
,
2022
, “
Near-Onset Dynamics in Natural Doubly Diffusive Convection
,”
J. Fluid Mech.
,
934
, p.
A42
.10.1017/jfm.2021.1121
6.
Rappaz
,
M.
,
Jarry
,
P.
,
Kurtuldu
,
G.
, and
Zollinger
,
J.
,
2020
, “
Solidification of Metallic Alloys: Does the Structure of the Liquid Matter?
,”
Metall. Mater. Trans. A
,
51
(
6
), pp.
2651
2664
.10.1007/s11661-020-05770-9
7.
Stern
,
M. E.
,
1960
, “
The Salt Fountain and Thermohaline Convection
,”
Tellus
,
12
(
2
), pp.
172
175
.10.3402/tellusa.v12i2.9378
8.
Veronis
,
G.
,
1965
, “
On Finite Amplitude Instability in Thermohaline Convection
,”
J. Marin. Res.
,
23
, pp.
1
17
.https://images.peabody.yale.edu/publications/jmr/jmr23-01-01.pdf
9.
Stommel
,
H.
,
Arons
,
A. B.
, and
Blanchard
,
D.
,
1956
, “
An Ocean Curiosity: The Perpetual Salt Fountain
,”
Deep-Sea Res.
,
3
(
2
), pp.
152
153
.10.1016/0146-6313(56)90095-8
10.
Nield
,
D. A.
,
1967
, “
The Thermohaline Rayleigh-Jeffreys Problem
,”
J. Fluid Mech.
,
29
(
3
), pp.
545
558
.10.1017/S0022112067001028
11.
Schmitt
,
R. W.
,
1983
, “
The Characteristics of Salt Fingers in a Variety of Fluid Systems, Including Stellar Interiors, Liquid Metals, Oceans, and Magmas
,”
Phys. Fluids
,
26
(
9
), pp.
2373
2377
.10.1063/1.864419
12.
Turner
,
J. S.
,
1985
, “
Multicomponent Convection
,”
An. Rev. Fluid Mech.
,
17
(
1
), pp.
11
44
.10.1146/annurev.fl.17.010185.000303
13.
Turner
,
J. S.
,
1973
,
Boyuancy Effects in Fluids
,
Cambridge University Press
, Cambridge, UK.
14.
Holyer
,
J. Y.
,
1981
, “
On the Collective Stability of Salt Fingers
,”
J. Fluid Mech.
,
110
, pp.
195
207
.10.1017/S0022112081000682
15.
Baines
,
P. G.
, and
Gill
,
A. E.
,
1969
, “
On Thermohaline Convection With Linear Gradients
,”
J. Fluid Mech.
,
37
(
2
), pp.
289
306
.10.1017/S0022112069000553
16.
Huppert
,
H. E.
, and
Moore
,
D. R.
,
1976
, “
Nonlinear Double-Diffusive Convection
,”
J. Fluid Mech.
,
78
(
4
), pp.
821
854
.10.1017/S0022112076002759
17.
Malkus
,
M. V. R.
, and
Veronis
,
G.
,
1958
, “
Finite Amplitude Cellular Convection
,”
J. Fluid Mech.
,
4
(
3
), pp.
225
260
.10.1017/S0022112058000410
18.
Krishnamurti
,
R.
,
1968
, “
Finite Amplitude Convection With Changing Mean Temperature. Part 1. Theory
,”
J. Fluid Mech.
,
33
(
3
), pp.
445
455
.10.1017/S0022112068001436
19.
Saltzman
,
B.
,
1962
, “
Finite Amplitude Free Convection as an Initial Value Problem-I
,”
J. Atmos. Sci.
,
19
(
4
), pp.
329
341
.10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
20.
Veronis
,
G.
,
1959
, “
Cellular Convection With Finite Amplitude in a Rotating Fluid
,”
J. Fluid Mech.
,
5
(
3
), pp.
401
435
.10.1017/S0022112059000283
21.
Kuo
,
H. L.
,
1961
, “
Solution of the Non-Linear Equations of the Cellular Convection and Heat Transport
,”
J. Fluid Mech.
,
10
(
04
), pp.
611
630
.10.1017/S0022112061000408
22.
Palm
,
E.
,
Weber
,
J. E.
, and
Kvernvold
,
O.
,
1972
, “
On Steady Convection in a Porous Medium
,”
J. Fluid Mech.
,
54
(
1
), pp.
153
161
.10.1017/S002211207200059X
23.
Rameshwar
,
Y.
,
Rawoof Sayeed
,
M. A.
,
Rani
,
H. P.
, and
Laroze
,
D.
,
2017
, “
Finite Amplitude Cellular Convection Under the Influence of a Vertical Magnetic Field
,”
Int.J. Heat Mass Transfer
,
114
, pp.
559
577
.10.1016/j.ijheatmasstransfer.2017.06.076
24.
Rameshwar
,
Y.
,
Rawoof Sayeed
,
M. A.
,
Rani
,
H. P.
, and
Laroze
,
D.
,
2013
, “
Mean Flow Effects in Magneto-Convection
,”
Int. J. Heat Mass Transfer
,
65
, pp.
885
862
.10.1016/j.ijheatmasstransfer.2013.06.041
25.
Rameshwar
,
Y.
,
Srinivas
,
G.
,
Laroze
,
D.
,
Rawoof Sayeed
,
M. A.
, and
Rani
,
H. P.
,
2022
, “
Convective Instabilities in Binary Mixture 3 H e 4 H e in Porous Media
,”
Chin. J. Phys.
,
77
, pp.
773
803
.10.1016/j.cjph.2022.03.010
26.
Bolton
,
E. W.
, and
Busse
,
F. H.
,
1985
, “
Stability of Convection Rolls in a Layer With Stress-Free Boundaries
,”
J. Fluid Mech.
,
150
, pp.
487
498
.10.1017/S0022112085000246
27.
Kimura
,
S.
, and
Bejan
,
A.
,
1983
, “
The Heatline Visualization of Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
4
), pp.
916
919
.10.1115/1.3245684
28.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
, Great Clarendon Street, UK.
29.
Jakob
,
M.
,
1949
,
Heat Transfer
, Vol.
1
,
Wiley
,
New York
.
30.
Morega
,
A. I. M.
, and
Bejan
,
A.
,
1993
, “
Heatline Visualization of Forced Convection Laminar Boundary Layers
,”
Int. J. Heat Mass Transfer
,
36
(
16
), pp.
3957
3966
.10.1016/0017-9310(93)90146-W
31.
Aggarwal
,
S. K.
, and
Manhapra
,
A.
,
1989
, “
Use of Heatlines for Unsteady Buoyancy-Driven Flow in Cylindrical Enclosure
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
2
), pp.
576
578
.10.1115/1.3250719
32.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
33.
Basak
,
T.
,
Anandalakshmi
,
R.
,
Roy
,
S.
, and
Pop
,
I.
,
2013
, “
Role of Entropy Generation on Thermal Management Due to Thermal Convection in Porous Trapezoidal Enclosures With Isothermal and Non-Isothermal Heating of Wall
,”
Int. J. Heat Mass Transfer
,
67
, pp.
810
828
.10.1016/j.ijheatmasstransfer.2013.08.019
34.
Abdul Rawoof Sayeed
,
M.
, and
Mohammed Majid
,
A.
,
2022
, “
Entropy Generation during Cellular Magnetoconvection
,”
Eng. Lett.
,
30
(
2
), pp.
392
398
.http://www.engineeringletters.com/issues_v30/issue_2/EL_30_2_01.pdf
35.
Basak
,
T.
,
Das
,
D.
, and
Biswal
,
P.
,
2018
, “
Heatlines: Modeling, Visualization, Mixing and Thermal Management
,”
Prog. Energy Combust. Sci.
,
64
, pp.
157
218
.10.1016/j.pecs.2017.08.003
You do not currently have access to this content.