Abstract

Three-dimensional (3D) flow of non-Newtonian liquid is studied in this analysis. Also, this paper is mainly focused on an incompressible magnetic liquid with low Curie temperature and moderate saturation magnetization. An extremely long, straight wire delivering an electric current generates a magnetic field that affects the fluid. Thermal radiation and chemical reaction impacts are considered to study heat and mass transport characteristics. Appropriate transformations are used to reduce pertinent flow expressions into ordinary differential equations (ODEs). The obtained ODEs are solved by means of a numerical method (Runge–Kutta–Fehlberg's fourth–fifth order method (RKF-45) algorithm with shooting technique). The effect of pertinent parameters like chemical reaction rate parameter (between 0.1 and 1.5), ferromagnetic interaction parameter (between 0.01 and 1.0), viscous dissipation parameter (between 0.1 and 1.0), radiation parameter (between 0.1 and 1.0), Deborah number (between 0.1 and 1.0) and Schmidt number (between 1.0 and 2.0) on Maxwell liquid flow, heat and mass transport is illustrated via graphs. Furthermore, from the analysis, the heat transfer rate increases about 30%–40% for the increasing values of the ferromagnetic interaction parameter. Also, the mass transfer rate increases about 4%–6% for the increasing values of the chemical reaction rate parameter.

References

1.
Punith Gowda
,
R. J.
,
Naveen Kumar
,
R.
,
Prasannakumara
,
B. C.
,
Nagaraja
,
B.
, and
Gireesha
,
B. J.
,
2021
, “
Exploring Magnetic Dipole Contribution on Ferromagnetic Nanofluid Flow Over a Stretching Sheet: An Application of Stefan Blowing
,”
J. Mol. Liq.
,
335
, p.
116215
.10.1016/j.molliq.2021.116215
2.
Majeed
,
A.
,
Zeeshan
,
A.
, and
Ellahi
,
R.
,
2017
, “
Chemical Reaction and Heat Transfer on Boundary Layer Maxwell Ferro-Fluid Flow Under Magnetic Dipole With Soret and Suction Effects
,”
Eng. Sci. Technol. Int. J.
,
20
(
3
), pp.
1122
1128
.10.1016/j.jestch.2016.11.007
3.
Nadeem
,
S.
,
Ijaz
,
M.
,
El-Kott
,
A.
, and
Ayub
,
M.
,
2020
, “
Rosseland Analysis for Ferromagnetic Fluid in Presence of Gyrotactic Microorganisms and Magnetic Dipole
,”
Ain Shams Eng. J.
,
11
(
4
), pp.
1295
1308
.10.1016/j.asej.2020.03.007
4.
Alhadhrami
,
A.
,
Alzahrani
,
H. A. H.
,
Prasanna
,
B. M.
,
Madhukeshwara
,
N.
,
Rajendraprasad
,
K. C.
,
Ganesh
,
D. B.
, and
Jayaprakash
,
M. C.
,
2021
, “
Impact of Stefan Blowing and Magnetic Dipole on Bio-Convective Flow of Maxwell Nanofluid Over a Stretching Sheet
,”
Proc. Inst. Mech. Eng. E J. Process Mech. Eng.
, epub.10.1177/09544089211058107
5.
Naveen Kumar
,
R.
,
Jyothi
,
A. M.
,
Alhumade
,
H.
,
Punith Gowda
,
R. J.
,
Alam
,
M. M.
,
Ahmad
,
I.
,
Gorji
,
M. R.
, and
Prasannakumara
,
B. C.
,
2021
, “
Impact of Magnetic Dipole on Thermophoretic Particle Deposition in the Flow of Maxwell Fluid Over a Stretching Sheet
,”
J. Mol. Liq.
,
334
, p.
116494
.10.1016/j.molliq.2021.116494
6.
Kumar
,
V.
,
Madhukesh
,
J. K.
,
Jyothi
,
A. M.
,
Prasannakumara
,
B. C.
,
Ijaz Khan
,
M.
, and
Chu
,
Y.-M.
,
2021
, “
Analysis of Single and Multi-Wall Carbon Nanotubes (SWCNT/MWCNT) in the Flow of Maxwell Nanofluid With the Impact of Magnetic Dipole
,”
Comput. Theor. Chem.
,
1200
, p.
113223
.10.1016/j.comptc.2021.113223
7.
Shehzad
,
S. A.
,
Mabood
,
F.
,
Rauf
,
A.
, and
Tlili
,
I.
,
2020
, “
Forced Convective Maxwell Fluid Flow Through Rotating Disk Under the Thermophoretic Particles Motion
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104693
.10.1016/j.icheatmasstransfer.2020.104693
8.
Ali Khan
,
K.
,
Seadawy
,
A. R.
, and
Jhangeer
,
A.
,
2021
, “
Numerical Appraisal Under the Influence of the Time Dependent Maxwell Fluid Flow Over a Stretching Sheet
,”
Math. Methods Appl. Sci.
,
44
(
7
), pp.
5265
5279
.10.1002/mma.7107
9.
Ahmed
,
A.
,
Khan
,
M.
,
Ahmed
,
J.
, and
Nadeem
,
S.
,
2020
, “
Mixed Convection in Unsteady Stagnation Point Flow of Maxwell Fluid Subject to Modified Fourier's Law,” Arab
,”
J. Sci. Eng.
,
45
(
11
), pp.
9439
9447
.10.1007/s13369-020-04724-y
10.
Riaz
,
M. B.
,
Atangana
,
A.
, and
Iftikhar
,
N.
,
2021
, “
Heat and Mass Transfer in Maxwell Fluid in View of Local and Non-Local Differential Operators
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4313
4329
.10.1007/s10973-020-09383-7
11.
Sarada
,
K.
,
Gowda
,
R. J. P.
,
Sarris
,
I. E.
,
Kumar
,
R. N.
, and
Prasannakumara
,
B. C.
,
2021
, “
Effect of Magnetohydrodynamics on Heat Transfer Behaviour of a Non-Newtonian Fluid Flow Over a Stretching Sheet Under Local Thermal Non-Equilibrium Condition
,”
Fluids
,
6
(
8
), p.
264
.10.3390/fluids6080264
12.
Afrand
,
M.
,
Pordanjani
,
A. H.
,
Aghakhani
,
S.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2020
, “
Free Convection and Entropy Generation of a Nanofluid in a Tilted Triangular Cavity Exposed to a Magnetic Field With Sinusoidal Wall Temperature Distribution Considering Radiation Effects
,”
Int. Commun. Heat Mass Transfer
,
112
, p.
104507
.10.1016/j.icheatmasstransfer.2020.104507
13.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2019
, “
Fluid-Solid Interaction of Elastic-Step Type Corrugation Effects on the Mixed Convection of Nanofluid in a Vented Cavity With Magnetic Field
,”
Int. J. Mech. Sci.
,
152
, pp.
185
197
.10.1016/j.ijmecsci.2018.12.044
14.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2019
, “
MHD Pulsating Forced Convection of Nanofluid Over Parallel Plates With Blocks in a Channel
,”
Int. J. Mech. Sci.
,
157–158
, pp.
726
740
.10.1016/j.ijmecsci.2019.04.048
15.
Gireesha
,
B. J.
,
Sowmya
,
G.
,
Khan
,
M. I.
, and
Öztop
,
H. F.
,
2020
, “
Flow of Hybrid Nanofluid Across a Permeable Longitudinal Moving Fin Along With Thermal Radiation and Natural Convection
,”
Comput. Methods Programs Biomed.
,
185
, p.
105166
.10.1016/j.cmpb.2019.105166
16.
Shehzad
,
S. A.
,
Hayat
,
T.
,
Qasim
,
M.
, and
Asghar
,
S.
,
2013
, “
Effects of Mass Transfer on MHD Flow of Casson Fluid With Chemical Reaction and Suction
,”
Braz. J. Chem. Eng.
,
30
(
1
), pp.
187
195
.10.1590/S0104-66322013000100020
17.
Ijaz Khan
,
M.
,
Khan
,
S. A.
,
Hayat
,
T.
,
Qayyum
,
S.
, and
Alsaedi
,
A.
,
2020
, “
Entropy Generation Analysis in MHD Flow of Viscous Fluid by a Curved Stretching Surface With Cubic Autocatalysis Chemical Reaction
,”
Eur. Phys. J. Plus
,
135
(
2
), p.
249
.10.1140/epjp/s13360-019-00030-1
18.
Mabood
,
F.
,
Fatunmbi
,
E. O.
,
Benos
,
L.
, and
Sarris
,
I. E.
,
2022
, “
Entropy Generation in the Magnetohydrodynamic Jeffrey Nanofluid Flow Over a Stretching Sheet With Wide Range of Engineering Application Parameters
,”
Int. J. Appl. Comput. Math.
,
8
(
3
), p.
98
.10.1007/s40819-022-01301-9
19.
Punith Gowda
,
R. J.
,
Naveen Kumar
,
R.
,
Jyothi
,
A. M.
,
Prasannakumara
,
B. C.
, and
Sarris
,
I. E.
,
2021
, “
Impact of Binary Chemical Reaction and Activation Energy on Heat and Mass Transfer of Marangoni Driven Boundary Layer Flow of a Non-Newtonian Nanofluid
,”
Processes
,
9
(
4
), p.
702
.10.3390/pr9040702
20.
Selimefendigil
,
F.
,
Öztop
,
H. F.
, and
Chamkha
,
A. J.
,
2017
, “
Analysis of Mixed Convection of Nanofluid in a 3D Lid-Driven Trapezoidal Cavity With Flexible Side Surfaces and Inner Cylinder
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
40
51
.10.1016/j.icheatmasstransfer.2017.06.015
21.
Khan
,
M. N.
, and
Nadeem
,
S.
,
2021
, “
Consequences of Darcy–Forchheimer and Cattaneo– Christov on a Radiative Three-Dimensional Maxwell Fluid Flow Over a Vertical Surface
,”
J. Taiwan Inst. Chem. Eng.
,
118
, pp.
1
11
.10.1016/j.jtice.2021.01.018
22.
Murtaza
,
M. G.
,
Ferdows
,
M.
,
Misra
,
J. C.
, and
Tzirtzilakis
,
E. E.
,
2019
, “
Three-Dimensional Biomagnetic Maxwell Fluid Flow Over a Stretching Surface in Presence of Heat Source/Sink
,”
Int. J. Biomath.
,
12
(
03
), p.
1950036
.10.1142/S1793524519500360
23.
Sharma
,
R.
,
Hussain
,
S. M.
,
Raju
,
C. S. K.
,
Seth
,
G. S.
, and
Chamkha
,
A. J.
,
2020
, “
Study of Graphene Maxwell Nanofluid Flow Past a Linearly Stretched Sheet: A Numerical and Statistical Approach
,”
Chin. J. Phys.
,
68
, pp.
671
683
.10.1016/j.cjph.2020.10.013
24.
Kumar
,
S. G.
,
Varma
,
S. V. K.
,
Prasad
,
P. D.
,
Raju
,
C. S. K.
,
Makinde
,
O. D.
, and
Sharma
,
R.
,
2018
, “
MHD Reacting and Radiating 3-D Flow of Maxwell Fluid Past a Stretching Sheet With Heat Source/Sink and Soret Effects in a Porous Medium
,”
Defect Diffus. Forum
,
387
, pp.
145
156
.10.4028/www.scientific.net/DDF.387.145
25.
Rasool
,
G.
,
Shafiq
,
A.
,
Hussain
,
S.
,
Zaydan
,
M.
,
Wakif
,
A.
,
Chamkha
,
A. J.
, and
Bhutta
,
M. S.
,
2022
, “
Significance of Rosseland's Radiative Process on Reactive Maxwell Nanofluid Flows Over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno's Model
,”
Micromachines
,
13
(
3
), p.
368
.10.3390/mi13030368
26.
Abbasi
,
F. M.
, and
Shehzad
,
S. A.
,
2016
, “
Heat Transfer Analysis for Three-Dimensional Flow of Maxwell Fluid With Temperature Dependent Thermal Conductivity: Application of Cattaneo-Christov Heat Flux Model
,”
J. Mol. Liq.
,
220
, pp.
848
854
.10.1016/j.molliq.2016.04.132
27.
Tzirtzilakis
,
E. E.
, and
Kafoussias
,
N. G.
,
2009
, “
Three-Dimensional Magnetic Fluid Boundary Layer Flow Over a Linearly Stretching Sheet
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
1
), p.
011702
.10.1115/1.3194765
You do not currently have access to this content.