Abstract

Recent advancements in surface nano-engineering have spurred intense interests in their implementation for enhancing condensation heat transfer. When appropriately designed, nano-engineered surfaces not only lead to highly efficient transport mechanisms not achievable with conventional dropwise condensation (DWC), they also demonstrate the possibility of augmenting condensation of low surface tension fluids widely used in industry. These advantages are further enhanced by the development of highly scalable nanofabrication methods, which enable the potential transition from laboratory-scale prototypes to real-world industrial applications. In this review, we discuss the progress, opportunities, and challenges of enhancing condensation heat and mass transfer with nano-engineered surfaces. This article provides an overview of the recent developments in micro/nanoscale coating and structure fabrication techniques and performs a thorough comparison of their condensation performance, elucidating the complex interfacial transport mechanism involved. Surface structuring methods that are durable, scalable, and low-cost are essential attributes for large-scale industrial implementation. Here, the methods used to improve surface durability and demonstrations of nanostructure-enhanced meter-scale condensers are presented. Limitations are discussed and the potential techniques to overcome these challenges are summarized. Given the recent development of metal additive manufacturing (AM) technology and its growing relevance in manufacturing processes, we end this review by providing our perspectives on the opportunities in enabling surface nanostructuring of metal additive manufactured materials and the potential of nanometric–millimetric codesign optimization for the development of next-generation additively manufactured condensers.

References

1.
Kim
,
M.-H.
, and
Bullard
,
C. W.
,
2002
, “
Air-Side Performance of Brazed Aluminum Heat Exchangers Under Dehumidifying Conditions
,”
Int. J. Refrig.
,
25
(
7
), pp.
924
934
.10.1016/S0140-7007(01)00106-2
2.
Beer
,
J. M.
,
2007
, “
High Efficiency Electric Power Generation: The Environmental Role
,”
Prog. Energy Combust. Sci.
,
33
, pp.
107
134
.10.1016/j.pecs.2006.08.002
3.
Khawaji
,
A. D.
,
Kutubkhanah
,
I. K.
, and
Wie
,
J. M.
,
2008
, “
Advances in Seawater Desalination Technologies
,”
Desalination
,
221
(
1–3
), pp.
47
69
.10.1016/j.desal.2007.01.067
4.
Wong
,
T. N.
,
Kandasamy
,
R.
,
Toh
,
K. C.
, and
Ho
,
J. Y.
,
2020
, “Server Rack Cooling Arrangement,” International Application published under The Patent Cooperation Treaty (PCT) WO2020/027725 A1.
5.
Yau
,
K. K.
,
Cooper
,
J. R.
, and
Rose
,
J. W.
,
1985
, “
Effect of Fin Spacing on the Performance of Horizontal Integral-Fin Condenser Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
107
, pp.
337
383
.
6.
Ali
,
H. M.
, and
Briggs
,
A.
,
2014
, “
An Investigation of Condensate Retention on Pin-Fin Tube
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
503
510
.10.1016/j.applthermaleng.2013.11.038
7.
Ho
,
J. Y.
, and
Leong
,
K. C.
,
2021
, “
A Critical Review on Filmwise Natural and Forced Convection Condensation on Enhanced Surfaces
,”
Appl. Therm. Eng.
,
186
, p.
116437
.10.1016/j.applthermaleng.2020.116437
8.
Honda
,
H.
,
Uchima
,
B.
,
Nozu
,
S.
,
Torigoe
,
E.
, and
Imai
,
S.
,
1992
, “
Film Condensation of R-113 on Staggered Bundles of Horizontal Finned Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
2
), pp.
442
449
.10.1115/1.2911293
9.
Al-Badri
,
A. R.
,
Bar
,
A.
,
Gotterbarm
,
A.
,
Rausch
,
M. H.
, and
Fröba
,
A. P.
,
2016
, “
The Influence of Fin Structure and Fin Density on the Condensation Heat Transfer of R134a on Single Finned Tubes and in Tube Bundles
,”
Int. J. Heat Mass Transfer
,
100
, pp.
582
589
.10.1016/j.ijheatmasstransfer.2016.04.087
10.
Liu
,
P.
,
Kandasamy
,
R.
,
Ho
,
J. Y.
, and
Wong
,
T. N.
,
2020
, “
An Experimental Investigation on the Effect of Air on Filmwise Condensation of PF-5060 Dielectric Fluid on Plain and Finned Tube Bundles
,”
Int. J. Heat Mass Transfer
,
162
, p.
120349
.10.1016/j.ijheatmasstransfer.2020.120349
11.
Rose
,
J. W.
,
2020
, “
Dropwise Condensation 2019 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
142
, p.
043101
.10.1115/1.4046294
12.
Tanner
,
D. W.
,
Potter
,
C. J.
,
Pope
,
D.
, and
West
,
D.
,
1965
, “
Heat Transfer in Droplet condensation—Part I, The Effects of Heat Flux, Steam Velocity and Non-Condensable Gas Concentration
,”
Int. J. Heat Mass Transfer
,
8
(
3
), pp.
419
426
.10.1016/0017-9310(65)90005-0
13.
Tanner
,
D. W.
,
Pope
,
D.
,
Potter
,
C. J.
, and
West
,
D.
,
1965
, “
Heat Transfer in Dropwise Condensation—Part II, Surface Chemistry
,”
Int. J. Heat Mass Transfer
8
(
3
), pp.
427
436
.10.1016/0017-9310(65)90006-2
14.
Tanasawa
,
I.
, and
Utaka
,
Y.
,
1983
, “
Measurement of Condensation Curves for Dropwise Condensation of Steam at Atmospheric Pressure
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
3
), pp.
633
638
.10.1115/1.3245632
15.
Tsuruta
,
T.
,
Tanaka
,
H.
, and
Togashi
,
S.
,
1991
, “
Experimental Verification on Constriction Resistance Theory in Dropwise Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
34
, pp.
2787
2796
.
16.
Ma
,
X.
,
Chen
,
J.
,
Xu
,
D.
,
Lin
,
J.
,
Ren
,
C.
, and
Long
,
Z.
,
2002
, “
Influence of Processing Conditions of Polymer Film on Dropwise Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3405
3411
.10.1016/S0017-9310(02)00059-5
17.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1964
, “
Heat-Transfer Measurements During Dropwise Condensation of Stem
,”
Int. J. Heat Mass Transfer
,
7
(
2
), pp.
272
273
.10.1016/0017-9310(64)90095-X
18.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1965
, “
An Experimental Study on Heat Transfer by Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
8
(
8
), pp.
1117
1133
.10.1016/0017-9310(65)90139-0
19.
Citakoglu
,
E.
, and
Rose
,
J. W.
,
1968
, “
Dropwise Condensation—Some Factors Influencing the Validity of Heat-Transfer Measurements
,”
Int. J. Heat Mass Transfer
,
11
(
3
), pp.
523
537
.10.1016/0017-9310(68)90094-X
20.
Aksan
,
S. N.
, and
Rose
,
J. W.
,
1973
, “
Dropwise Condensation—The Effect of Thermal Properties of the Condenser Material
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
461
467
.10.1016/0017-9310(73)90072-0
21.
Stylianou
,
S. A.
, and
Rose
,
J. W.
,
1980
, “
Dropwise Condensation of Surfaces Having Different Thermal Conductivities
,”
ASME J. Heat Transfer-Trans. ASME
,
102
(
3
), pp.
477
482
.10.1115/1.3244326
22.
Das
,
A. K.
,
Kilty
,
H. P.
,
Marto
,
P. J.
,
Andeen
,
G. B.
, and
Kumar
,
A.
,
2000
, “
The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
2
), pp.
278
286
.10.1115/1.521465
23.
Ma
,
J.
,
Sett
,
S.
,
Cha
,
H.
,
Yan
,
X.
, and
Miljkovic
,
N.
,
2020
, “
Recent Developments, Challenges, and Pathways to Stable Dropwise Condensation: A Perspective
,”
Appl. Phys.
,
116
(
26
), p.
260501
.10.1063/5.0011642
24.
Qi
,
Z.
,
Dongchang
,
Z.
, and
Jifang
,
L.
,
1991
, “
Surface Materials With Dropwise Condensation Made by Ion Implantation Technology
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2833
2835
.10.1016/0017-9310(91)90244-9
25.
Enright
,
R.
,
Miljkovic
,
N.
,
Al-Obeidi
,
A.
,
Thompson
,
C. V.
, and
Wang
,
E. N.
,
2012
, “
Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barrier and Structure Length Scale
,”
Langmuir
,
28
(
40
), pp.
14424
14432
.10.1021/la302599n
26.
Rose
,
J. W.
,
1967
, “
On the Mechanism of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
10
(
6
), pp.
755
762
.10.1016/0017-9310(67)90135-4
27.
Umur
,
A.
, and
Griffith
,
P.
,
1965
, “
Mechanism of Dropwise Condensation
,”
ASME J. Heat Transfer-Trans. ASME
,
87
(
2
), pp.
275
282
.10.1115/1.3689090
28.
Çengel
,
Y. A.
, and
Boles
,
M. A.
,
1998
,
Thermodynamics—An Engineering Approach
(McGraw-Hill Series in Mechanical Engineering), 3rd ed.,
McGraw-Hill
,
Boston
.
29.
Schrage
,
R.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University Press
,
New York
.
30.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
8
), p.
081502
.10.1115/1.4003742
31.
Abu-Orabi
,
M.
,
1998
, “
Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
81
87
.10.1016/S0017-9310(97)00094-X
32.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1966
, “
A Theory of Heat Transfer by Dropwise Condensation
,”
Proceedings of the Third International Heat Transfer Conference
,
Chicago, IL
, Aug. 7-12, pp.
362
375
.
33.
Cha
,
H.
,
Vahabi
,
H.
,
Wu
,
A.
,
Chavan
,
S.
,
Kim
,
M.-K.
,
Sett
,
S.
,
Bosch
,
S. A.
,
Wang
,
W.
,
Kota
,
A. K.
, and
Miljkovic
,
N.
,
2020
, “
Dropwise Condensation on Solid Hydrophilic Surfaces
,”
Sci. Adv.
,
6
(
2
), p.
eaax0746
.10.1126/sciadv.aax0746
34.
Sadhal
,
S. S.
, and
Martin
,
W. W.
,
1977
, “
Heat Transfer Through Drop Condensate Using Differential Inequalities
,”
Int. J. Heat Mass Transfer
,
20
(
12
), pp.
1401
1407
.10.1016/0017-9310(77)90037-0
35.
Ho
,
J. Y.
,
Rabbi
,
K. F.
,
Sett
,
S.
,
Wong
,
T. N.
, and
Miljkovic
,
N.
,
2021
, “
Dropwise Condensation of Low Surface Tension Fluids on Lubricant Infused Surfaces: Droplet Size Distribution and Heat Transfer Analysis
,”
Int. J. Heat Mass Transfer
,
172
, p.
121149
.10.1016/j.ijheatmasstransfer.2021.121149
36.
Rose
,
J. W.
,
2002
, “
Dropwise Condensation Theory and Experimental: A Review
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
216
(
2
), pp.
115
128
.10.1243/09576500260049034
37.
Ma
,
J.
,
Cahill
,
D. G.
, and
Miljkovic
,
N.
,
2020
, “
Condensation Induced Blistering as a Measurement Technique for the Adhesion Energy of Nanoscale Polymer Films
,”
Nano Lett.
,
20
(
5
), pp.
3918
3924
.10.1021/acs.nanolett.0c01086
38.
Vemuri
,
S.
,
Kim
,
K. J.
,
Wood
,
B. D.
,
Govindaraju
,
S.
, and
Bell
,
T. W.
,
2006
, “
Long Term Testing for Dropwise Condensation Using Self-Assembled Monolayer Coatings of n-Octadecyl Mercaptan
,”
Appl. Therm. Eng.
,
26
(
4
), pp.
421
429
.10.1016/j.applthermaleng.2005.05.022
39.
Bonner
,
R. W.
, III
,
2011
, “
Dropwise Condensation Life Testing of Self Assembled Monolayers
,”
ASME
Paper No. IHTC14-22936.10.1115/IHTC14-22936
40.
Sagiv
,
J.
,
1980
, “
Organized Monolayers by Adsorption. 1. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces
,”
J. Am. Chem. Soc.
,
102
(
1
), pp.
92
98
.10.1021/ja00521a016
41.
Enright
,
R.
,
Miljkovic
,
N.
,
Alvarado
,
J. L.
,
Kim
,
K.
, and
Rose
,
J. W.
,
2014
, “
Dropwise Condensation on Micro-and Nanostructured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
223
250
.10.1080/15567265.2013.862889
42.
Chandekar
,
A.
,
Sengupta
,
S. K.
, and
Whitten
,
J. E.
,
2010
, “
Thermal Stability of Thiol and Silane Monolayers: A Comparative Study
,”
Appl. Surf.
,
256
(
9
), pp.
2742
2749
.10.1016/j.apsusc.2009.11.020
43.
Paxson
,
A. T.
,
Yagüe
,
J. L.
,
Gleason
,
K. K.
, and
Varanasi
,
K. K.
,
2014
, “
Stable Dropwise Condensation for Enhancing Heat Transfer Via the Initiated Chemical Vapor Deposition (iCVD) of Grafted Polymer Films
,”
Adv. Mater.
,
26
(
3
), pp.
418
423
.10.1002/adma.201303065
44.
Holden
,
K. M.
,
Wanniarachchi
,
A. S.
,
Marto
,
P. J.
,
Boone
,
D. H.
, and
Rose
,
J. W.
,
1987
, “
The Use of Organic Coatings to Promote Dropwise Condensation of Steam
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
3
), pp.
768
774
.10.1115/1.3248156
45.
Khan
,
S. A.
,
Tahir
,
F.
,
Baloch
,
A. A. B.
, and
Koc
,
M.
,
2019
, “
Review of Micro–Nanoscale Surface Coatings Application for Sustaining Dropwise Condensation
,”
Coatings
,
9
(
2
), p.
117
.10.3390/coatings9020117
46.
Zhang
,
B. J.
,
Kuok
,
C.
,
Kim
,
K. J.
,
Hwang
,
T.
, and
Yoon
,
H.
,
2015
, “
Dropwise Steam Condensation on Various Hydrophobic Surface: Polyphenylene Sulfide (PPS), Polytetrafluoroethylene (PTFE), and Self-Assembled Micro/Nano Silver (SAMS)
,”
Int. J. Heat Mass Transfer
,
89
, pp.
353
358
.10.1016/j.ijheatmasstransfer.2015.05.060
47.
Kim
,
T.
,
Shin
,
D.
,
Lee
,
J.
, and
Kim
,
S. J.
,
2021
, “
Effect of Layer-by-Layer Assembled Carbon Nanotube Coatings on Dropwise Condensation Heat Transfer Associated With Non-Condensable Gas Effect
,”
Int. J. Heat Mass Transfer
,
175
, p.
121345
.10.1016/j.ijheatmasstransfer.2021.121345
48.
Hia
,
I. L.
,
Vahedi
,
V.
, and
Pasbakhsh
,
P.
,
2016
, “
Self-Healing Polymer Composites: Prospects, Challenges, and Applications
,”
Polym. Rev.
,
56
(
2
), pp.
225
261
.10.1080/15583724.2015.1106555
49.
Li
,
Y.
,
Li
,
L.
, and
Sun
,
J.
,
2010
, “
Bioinspired Self-Healing Superhydrophobic Coatings
,”
Angew. Chem., Int. Ed.
,
49
(
35
), pp.
6129
6133
.10.1002/anie.201001258
50.
Boreyko
,
J. B.
, and
Chen
,
C.-H.
,
2009
, “
Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
103
(
18
), p.
184501
.10.1103/PhysRevLett.103.184501
51.
Miljkovic
,
N.
,
Xiao
,
R.
,
Preston
,
D. J.
,
Enright
,
R.
,
McKay
,
I.
, and
Wang
,
E. N.
,
2013
, “
Condensation on Hydrophilic, Hydrophobic, Nanostructured Superhydrophobic and Oil-Infused Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
135
, p.
080906
.
52.
Oh
,
J.
,
Yin
,
S.
,
Dana
,
C. E.
,
Hong
,
S.
,
Roman
,
J. K.
,
Jo
,
K. D.
,
Chavan
,
S.
,
Cropek
,
D.
,
Alleyne
,
M.
, and
Miljkovic
,
N.
,
2019
, “
Cicada-Inspired Self-Cleaning Superhydrophobic Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
10
), p.
100905
.10.1115/1.4044677
53.
Cha
,
H.
,
Chun
,
J. M.
,
Xu
,
Y.
, and
Miljkovic
,
N.
,
2017
, “
Focal Plane Shift Imaging for the Analysis of Multi-Droplet Jumping
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
1
), p.
020903
.10.1115/1.4035573
54.
Preston
,
D.
,
Miljkovic
,
N.
,
Wang
,
E. N.
, and
Enright
,
R.
,
2014
, “
Jumping Droplet Electrostatic Charging and Effect on Vapor Drag
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
8
), p.
080909
.10.1115/1.4027527
55.
Miljkovic
,
N.
,
Preston
,
D. J.
, and
Enright
,
R.
,
2013
, “
Jumping Droplet Dynamics on Scalable Nanostructured Superhydrophobic Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
135
, p.
080907
.
56.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Modeling and Optimization of Superhydrophobic Condensation
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
11
), p.
111004
.10.1115/1.4024597
57.
Enright
,
R.
,
Miljkovic
,
N.
,
Dou
,
N.
,
Nam
,
Y.
, and
Wang
,
E. N.
,
2013
, “
Condensation on Superhydrophobic Copper Oxide Nanostructures
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
9
), p.
091304
.10.1115/1.4024424
58.
Enright
,
R.
,
Miljkovic
,
N.
,
Sprittles
,
J.
,
Nolan
,
K.
,
Mitchell
,
R.
, and
Wang
,
E. N.
,
2014
, “
How Coalescing Droplets Jump
,”
ACS Nano
,
8
(
10
), pp.
10352
10362
.10.1021/nn503643m
59.
Cha
,
H.
,
Chun
,
J. M.
,
Sotelo
,
J.
, and
Miljkovic
,
N.
,
2016
, “
Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes
,”
ACS Nano
,
10
(
9
), pp.
8223
8232
.10.1021/acsnano.6b03859
60.
Cha
,
H.
,
Xu
,
C.
,
Sotelo
,
J.
,
Chun
,
J. M.
,
Yokoyama
,
Y.
,
Enright
,
R.
, and
Miljkovic
,
N.
,
2016
, “
Coalescence-Induced Nanodroplet Jumping
,”
Phys. Rev. Fluids
,
1
(
6
), p.
064102
.10.1103/PhysRevFluids.1.064102
61.
Lienhard
,
I.
, and
John
,
H.
,
2005
,
A Heat Transfer Textbook
,
Phlogiston Press
, Cambridge, MA.
62.
Mulroe
,
M. D.
,
Srijanto
,
B. R.
,
Ahmadi
,
S. F.
,
Collier
,
C. P.
, and
Boreyko
,
J. B.
,
2017
, “
Tuning Superhydrophobic Nanostructures to Enhance Jumping-Droplet Condensation
,”
ACS Nano
,
11
(
8
), pp.
8499
8510
.10.1021/acsnano.7b04481
63.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.10.1021/nl303835d
64.
Wen
,
R.
,
Xu
,
S.
,
Ma
,
X.
,
Lee
,
Y.-C.
, and
Yang
,
R.
,
2018
, “
Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer
,”
Joule
,
2
(
2
), pp.
269
279
.10.1016/j.joule.2017.11.010
65.
Wen
,
R.
,
Li
,
Q.
,
Wu
,
J.
,
Wu
,
G.
,
Wang
,
W.
,
Chen
,
Y.
,
Ma
,
X.
,
Zhao
,
D.
, and
Yang
,
R.
,
2017
, “
Hydrophobic Copper Nanowires for Enhancing Condensation Heat Transfer
,”
Nano Energy
,
33
, pp.
177
183
.10.1016/j.nanoen.2017.01.018
66.
Rykaczewski
,
K.
,
2012
, “
Microdroplet Growth Mechanism During Water Condensation on Superhydrophobic Surfaces
,”
Langmuir
,
28
(
20
), pp.
7720
7729
.10.1021/la301618h
67.
Ma
,
X.-H.
,
Zhou
,
X.-D.
,
Lan
,
Z.
,
Yi-Ming
,
L.
, and
Zhang
,
Y.
,
2008
, “
Condensation Heat Transfer Enhancement in the Presence of Non-Condensable Gas Using the Interfacial Effect of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1728
1737
.10.1016/j.ijheatmasstransfer.2007.07.021
68.
Zhang
,
T.-Y.
,
Mou
,
L.-W.
,
Zhang
,
J.-Y.
,
Fan
,
L.-W.
, and
Li
,
J.-Q.
,
2020
, “
A Visualized Study of Enhanced Steam Condensation Heat Transfer on a Honeycomb-Like Microporous Superhydrophobic Surface in the Presence of a Non-Condensable Gas
,”
Int. J. Heat Mass Transfer
,
150
, p.
119352
.10.1016/j.ijheatmasstransfer.2020.119352
69.
Xie
,
J.
,
Xu
,
J.
,
Li
,
X.
, and
Liu
,
H.
,
2019
, “
Dropwise Condensation on Superhydrophobic Nanostructure Surface, Part I: Long-Term Operation and Nanostructure Failure
,”
Int. J. Heat Mass Transfer
,
129
, pp.
86
95
.10.1016/j.ijheatmasstransfer.2018.09.100
70.
Zhao
,
Y.
,
Luo
,
Y.
,
Zhu
,
J.
,
Li
,
J.
, and
Gao
,
X.
,
2015
, “
Copper-Based Ultrathin Nickel Nanocone Films With High-Efficiency Dropwise Condensation Heat Transfer Performance
,”
ACS Appl. Mater. Interfaces
,
7
(
22
), pp.
11719
11723
.10.1021/acsami.5b03264
71.
Qu
,
M.
,
Liu
,
J.
, and
He
,
J.
,
2016
, “
Fabrication of Copper-Based ZnO Nanopencil Arrays With High-Efficiency Dropwise Condensation Heat Transfer Performance
,”
RSC Adv.
,
6
(
64
), pp.
59405
59409
.10.1039/C6RA09699A
72.
Wang
,
R.
,
Zhu
,
J.
,
Meng
,
K.
,
Wang
,
H.
,
Deng
,
T.
,
Gao
,
X.
, and
Jiang
,
L.
,
2018
, “
Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer
,”
Adv. Funct. Mater.
,
28
(
49
), p.
1800634
.10.1002/adfm.201800634
73.
Seo
,
D.
,
Shim
,
J.
,
Moon
,
B.
,
Lee
,
K.
,
Lee
,
J.
,
Lee
,
C.
, and
Nam
,
Y.
,
2020
, “
Passive Anti-Flooding Superhydrophobic Surfaces
,”
ACS Appl. Mater. Interfaces
,
12
(
3
), pp.
4068
4080
.10.1021/acsami.9b17943
74.
Wen
,
R.
,
Xu
,
S.
,
Zhao
,
D.
,
Lee
,
Y.-C.
,
Ma
,
X.
, and
Yang
,
R.
,
2017
, “
Hierarchical Superhydrophobic Surfaces With Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation
,”
ACS Appl. Mater. Interfaces
,
9
(
51
), pp.
44911
44921
.10.1021/acsami.7b14960
75.
Zhu
,
J.
,
Luo
,
Y.
,
Tian
,
J.
,
Li
,
J.
, and
Gao
,
X.
,
2015
, “
Clustered Ribbed-Nanoneedle Structured Copper Surfaces With High-Efficiency Dropwise Condensation Heat Transfer Performance
,”
ACS Appl. Mater. Interfaces
,
7
(
20
), pp.
10660
10665
.10.1021/acsami.5b02376
76.
Wang
,
R.
,
Wu
,
F.
,
Xing
,
D.
,
Yu
,
F.
, and
Gao
,
X.
,
2020
, “
Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation
,”
ACS Appl. Mater. Interfaces
,
12
(
21
), pp.
24512
24520
.10.1021/acsami.0c05224
77.
Zhang
,
T.-Y.
,
Mou
,
L.-W.
, and
Fan
,
L.-W.
,
2021
, “
Enhanced Steam Condensation Heat Transfer on a Scalable Honeycomb-Like Microporous Superhydrophobic Surface Under Various Pressures
,”
Appl. Therm. Eng.
,
185
, p.
116453
.10.1016/j.applthermaleng.2020.116453
78.
Mou
,
L.-W.
,
Zhang
,
T.-Y.
,
Zhang
,
J.-Y.
,
Li
,
J.-Q.
, and
Fan
,
L.-W.
,
2019
, “
Realization of Coalescence-Induced Condensate Droplet Jumping on a Hierarchical Porous Superhydrophobic Surface Over a Wide Range of Subcooling Up to 20 K
,”
AIP Adv.
,
9
(
4
), p.
045125
.10.1063/1.5090829
79.
Zhang
,
T.-Y.
,
Mou
,
L.-W.
,
Zhang
,
Y.-C.
,
Zhang
,
J.-Y.
,
Li
,
J.-Q.
, and
Fan
,
L.-W.
,
2021
, “
Hierarchical Microcavity Topography for Enhancement of Water Vapor Condensation Heat Transfer by Regulating Droplet Dynamics and Droplet Size Distribution
,”
Case Stud. Therm. Eng.
,
24
, p.
100882
.10.1016/j.csite.2021.100882
80.
Chen
,
S.
,
Wang
,
R.
,
Wu
,
F.
,
Zhang
,
H.
,
Gao
,
X.
, and
Jiang
,
L.
,
2021
, “
Copper-Based High-Efficiency Condensation Heat Transfer Interface Consisting of Superhydrophobic Hierarchical Microgroove and Nanocone Structure
,”
Mater. Today Phys.
,
19
, p.
100407
.10.1016/j.mtphys.2021.100407
81.
Peng
,
Q.
,
Jia
,
L.
,
Ding
,
Y.
,
Dang
,
C.
,
Yin
,
L.
, and
Yan
,
X.
,
2020
, “
Influence of Groove Orientation on Dropwise Condensation on Hydrophobic and Hierarchical Superhydrophobic Surfaces With Microgroove Arrays
,”
Int. Commun. Heat Mass Transfer
,
112
, p.
104492
.10.1016/j.icheatmasstransfer.2020.104492
82.
Parin
,
R.
,
Martucci
,
A.
,
Sturaro
,
M.
,
Bortolin
,
S.
,
Bersani
,
M.
,
Carraro
,
F.
, and
Del Col
,
D.
,
2018
, “
Nano-Structured Aluminum Surfaces for Dropwise Condensation
,”
Surf. Coat. Technol.
,
348
, pp.
1
12
.10.1016/j.surfcoat.2018.05.018
83.
Lu
,
M.-C.
,
Lin
,
C.-C.
,
Lo
,
C.-W.
,
Huang
,
C.-W.
, and
Wang
,
C.-C.
,
2017
, “
Superhydrophobic Si Nanowires for Enhanced Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
111
, pp.
614
623
.10.1016/j.ijheatmasstransfer.2017.04.021
84.
Wang
,
X.
,
Xu
,
B.
,
Liu
,
Q.
,
Yang
,
Y.
, and
Chen
,
Z.
,
2021
, “
Enhancement of Vapor Condensation Heat Transfer on the Micro-and Nano-Structured Superhydrophobic Surfaces
,”
Int. J. Heat Mass Transfer
,
177
, p.
121526
.10.1016/j.ijheatmasstransfer.2021.121526
85.
Lo
,
C.-W.
,
Chu
,
Y.-C.
,
Yen
,
M.-H.
, and
Lu
,
M.-C.
,
2019
, “
Enhancing Condensation Heat Transfer on Three-Dimensional Hybrid Surfaces
,”
Joule
,
3
(
11
), pp.
2806
2823
.10.1016/j.joule.2019.08.005
86.
Alwazzan
,
M.
,
Egab
,
K.
,
Peng
,
B.
,
Khan
,
J.
, and
Li
,
C.
,
2017
, “
Condensation on Hybrid-Patterned Copper Tubes (I): Characterization of Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
112
, pp.
991
1004
.10.1016/j.ijheatmasstransfer.2017.05.039
87.
Egab
,
K.
,
Alwazzan
,
M.
,
Peng
,
B.
,
Oudah
,
S. K.
,
Guo
,
Z.
,
Dai
,
X.
,
Khan
,
J.
, and
Li
,
C.
,
2020
, “
Enhancing Filmwise and Dropwise Condensation Using a Hybrid Wettability Contrast Mechanism: Circular Patterns
,”
Int. J. Heat Mass Transfer
,
154
, p.
119640
.10.1016/j.ijheatmasstransfer.2020.119640
88.
Hu
,
H.
,
Tang
,
G.
, and
Niu
,
D.
,
2015
, “
Experimental Investigation of Condensation Heat Transfer on Hybrid Wettability Finned Tube With Large Amount of Noncondensable Gas
,”
Int. J. Heat Mass Transfer
,
85
, pp.
513
523
.10.1016/j.ijheatmasstransfer.2015.02.006
89.
Wen
,
R.
,
Lan
,
Z.
,
Peng
,
B.
,
Xu
,
W.
,
Yang
,
R.
, and
Ma
,
X.
,
2017
, “
Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions
,”
ACS Appl. Mater. Interfaces
,
9
(
15
), pp.
13770
13777
.10.1021/acsami.7b01812
90.
Feng
,
J.
,
Pang
,
Y.
,
Qin
,
Z.
,
Ma
,
R.
, and
Yao
,
S.
,
2012
, “
Why Condensate Drops Can Spontaneously Move Away on Some Superhydrophobic Surfaces but Not on Others
,”
ACS Appl. Mater. Interfaces
,
4
(
12
), pp.
6618
6625
.10.1021/am301767k
91.
Rose
,
J.
,
1981
, “
Dropwise Condensation Theory
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
191
194
.10.1016/0017-9310(81)90026-0
92.
Lo
,
C.-W.
,
Wang
,
C.-C.
, and
Lu
,
M.-C.
,
2014
, “
Scale Effect on Dropwise Condensation on Superhydrophobic Surfaces
,”
ACS Appl. Mater. Interfaces
,
6
(
16
), pp.
14353
14359
.10.1021/am503629f
93.
Yan
,
X.
,
Chen
,
F.
,
Sett
,
S.
,
Chavan
,
S.
,
Li
,
H.
,
Feng
,
L.
,
Li
,
L.
, et al.,
2019
, “
Hierarchical Condensation
,”
ACS Nano
,
13
(
7
), pp.
8169
8184
.10.1021/acsnano.9b03275
94.
Yan
,
X.
,
Qin
,
Y.
,
Chen
,
F.
,
Zhao
,
G.
,
Sett
,
S.
,
Hoque
,
M. J.
,
Rabbi
,
K. F.
, et al.,
2020
, “
Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces
,”
ACS Nano
,
14
(
10
), pp.
12796
12809
.10.1021/acsnano.0c03487
95.
He
,
M.
,
Ding
,
Y.
,
Chen
,
J.
, and
Song
,
Y.
,
2016
, “
Spontaneous Uphill Movement and Self-Removal of Condensates on Hierarchical Tower-Like Arrays
,”
ACS Nano
,
10
(
10
), pp.
9456
9462
.10.1021/acsnano.6b04525
96.
Parker
,
A. R.
, and
Lawrence
,
C. R.
,
2001
, “
Water Capture by a Desert Beetle
,”
Nature
,
414
(
6859
), pp.
33
34
.10.1038/35102108
97.
Hou
,
Y.
,
Yu
,
M.
,
Chen
,
X.
,
Wang
,
Z.
, and
Yao
,
S.
,
2015
, “
Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface
,”
ACS Nano
,
9
(
1
), pp.
71
81
.10.1021/nn505716b
98.
Hoque
,
M. J.
,
Keum
,
H.
,
Kim
,
S.
, and
Miljkovic
,
N.
,
2019
, “
Visualization of Droplet Nucleation on Patterned Hybrid Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
10
), p.
100902
.10.1115/1.4044588
99.
Kashchiev
,
D.
,
2000
,
Nucleation: Basic Theory With Applications
,
Butterworth Heinemann
, Oxford, UK/Boston, MA.
100.
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2016
, “
Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces
,”
ACS Appl. Mater. Interfaces
,
8
(
8
), pp.
5729
5736
.10.1021/acsami.6b00852
101.
Zhu
,
Y.
,
Tso
,
C.
,
Ho
,
T.
,
Leung
,
M. K.
,
Yao
,
S.
, and
Qiu
,
H.
,
2020
, “
Heat Transfer Enhancement on Tube Surfaces With Biphilic Nanomorphology
,”
Appl. Therm. Eng.
,
180
, p.
115778
.10.1016/j.applthermaleng.2020.115778
102.
Tuteja
,
A.
,
Choi
,
W.
,
Mabry
,
J. M.
,
McKinley
,
G. H.
, and
Cohen
,
R. E.
,
2008
, “
Robust Omniphobic Surfaces
,”
Proc. Natl. Acad. Sci.
,
105
(
47
), pp.
18200
18205
.10.1073/pnas.0804872105
103.
Wong
,
T.-S.
,
Kang
,
S. H.
,
Tang
,
S. K. Y.
,
Smythe
,
E. J.
,
Hatton
,
B. D.
,
Grinthal
,
A.
, and
Aizenberg
,
J.
,
2011
, “
Bioinspired Self-Repairing Slippery Surfaces With Pressure-Stable Omniphobicity
,”
Nature
,
477
(
7365
), pp.
443
447
.10.1038/nature10447
104.
Rykaczewski
,
K.
,
Paxson
,
A. T.
,
Staymates
,
M.
,
Walker
,
M. L.
,
Sun
,
X.
,
Anand
,
S.
,
Srinivasan
,
S.
, et al.,
2014
, “
Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
,”
Sci. Rep.
,
4
, p.
4158
.10.1038/srep04158
105.
Preston
,
D. J.
,
Lu
,
Z.
,
Song
,
Y.
,
Zhao
,
Y.
,
Wilke
,
K. L.
,
Antao
,
D. S.
,
Louis
,
M.
, and
Wang
,
E. N.
,
2018
, “
Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces
,”
Sci. Rep.
,
8
(
1
), p.
540
.10.1038/s41598-017-18955-x
106.
Sett
,
S.
,
Sokalski
,
P.
,
Boyina
,
K.
,
Li
,
L.
,
Rabbi
,
K. F.
,
Auby
,
H.
,
Thomas
,
F.
, et al.,
2019
, “
Stable Dropwise Condensation of Ethanol and Hexane on Rationally Designed Ultrascalable Nanostructured Lubricant-Infused Surfaces
,”
Nano Lett.
,
19
(
8
), pp.
5287
5296
.10.1021/acs.nanolett.9b01754
107.
Preston
,
D. J.
,
Song
,
Y.
,
Lu
,
Z.
,
Antao
,
D. S.
, and
Wang
,
E. N.
,
2017
, “
Design of Lubricant Infused Surfaces
,”
ACS Appl. Mater. Interfaces
,
9
(
48
), pp.
42383
42392
.10.1021/acsami.7b14311
108.
Günay
,
A. A.
,
Sett
,
S.
,
Ge
,
Q.
,
Zhang
,
T.
, and
Miljkovic
,
N.
,
2020
, “
Cloaking Dynamics on Lubricant-Infused Surfaces
,”
Adv. Mater. Interfaces
,
7
(
19
), p.
2000983
.10.1002/admi.202000983
109.
Villegas
,
M.
,
Zhang
,
Y.
,
Abu Jarad
,
N.
,
Soleymani
,
L.
, and
Didar
,
T. F.
,
2019
, “
Liquid-Infused Surfaces: A Review of Theory, Design, and Applications
,”
ACS Nano
,
13
(
8
), pp.
8517
8536
.10.1021/acsnano.9b04129
110.
Wu
,
A.
, and
Miljkovic
,
N.
,
2018
, “
Droplet Cloaking Imaging and Characterization
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
3
), p.
030902
.10.1115/1.4039167
111.
Fowkes
,
F. M.
,
1964
, “
Attractive Forces at Interfaces
,”
Ind. Eng. Chem.
,
56
(
12
), pp.
40
52
.10.1021/ie50660a008
112.
Van Oss
,
C. J.
,
Chaudhury
,
M. K.
, and
Good
,
R. J.
,
1988
, “
Interfacial Lifshitz-Van Der Waals and Polar Interactions in Macroscopic Systems
,”
Chem. Rev.
,
88
(
6
), pp.
927
941
.10.1021/cr00088a006
113.
Van Oss
,
C. J.
, and
Good
,
R. J.
,
1992
, “
Prediction of the Solubility of Polar Polymers by Means of Interfacial Tension Combining Rules
,”
Langmuir
,
8
(
12
), pp.
2877
2879
.10.1021/la00048a006
114.
Sett
,
S.
,
Yan
,
X.
,
Barac
,
G.
,
Bolton
,
L. W.
, and
Miljkovic
,
N.
,
2017
, “
Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise Versus Reality
,”
ACS Appl. Mater. Interfaces
,
9
(
41
), pp.
36400
36408
.10.1021/acsami.7b10756
115.
Sett
,
S.
,
Oh
,
J.
,
Cha
,
H.
,
Veriotti
,
T.
,
Bruno
,
A.
,
Yan
,
X.
,
Barac
,
G.
,
Bolton
,
L. W.
, and
Miljkovic
,
N.
,
2021
, “
Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: The Extent of Lubricant Miscibility
,”
ACS Appl. Mater. Interfaces
,
13
(
19
), pp.
23121
23133
.10.1021/acsami.1c02716
116.
De Gennes
,
P.-G.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
,
2013
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Wave
,
Springer Science & Business Media
, New York.
117.
Weisensee
,
P. B.
,
Wang
,
Y.
,
Qian
,
H.
,
Schultz
,
D.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2017
, “
Condensate Droplet Size Distribution on Lubricant-Infused Surfaces
,”
Int. J. Heat Mass Transfer
,
109
, pp.
187
199
.10.1016/j.ijheatmasstransfer.2017.01.119
118.
Maeda
,
Y.
,
Lv
,
F.
,
Zhang
,
P.
,
Takata
,
Y.
, and
Orejon
,
D.
,
2020
, “
Condensate Droplet Size Distribution and Heat Transfer on Hierarchical Slippery Lubricant Infused Porous Surfaces
,”
Appl. Therm. Eng.
,
176
, p.
115386
.10.1016/j.applthermaleng.2020.115386
119.
Xiao
,
R.
,
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer
,”
Sci. Rep.
,
3
, p.
1988
.10.1038/srep01988
120.
Adera
,
S.
,
Alvarenga
,
J.
,
Shneidman
,
A. V.
,
Zhang
,
C. T.
,
Davit
,
A.
, and
Aizenberg
,
J.
,
2020
, “
Depletion of Lubricant From Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets
,”
ACS Nano
,
14
(
7
), pp.
8024
8035
.10.1021/acsnano.9b10184
121.
Kim
,
P.
,
Kreder
,
M. J.
,
Alvarenga
,
J.
, and
Aizenberg
,
J.
,
2013
, “
Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates
,”
Nano Lett.
,
13
(
4
), pp.
1793
1799
.10.1021/nl4003969
122.
Wexler
,
J. S.
,
Jacobi
,
J.
, and
Stone
,
H. A.
,
2015
, “
Shear-Driven Failure of Liquid-Infused Surfaces
,”
Phys. Rev. Lett.
,
114
(
16
), p.
168301
.10.1103/PhysRevLett.114.168301
123.
Ma
,
J.
,
Cha
,
H.
,
Kim
,
M.-K.
,
Cahill
,
D. G.
, and
Miljkovic
,
N.
,
2019
, “
Condensation Induced Delamination of Nanoscale Hydrophobic Films
,”
Adv. Funct. Mater.
,
29
(
43
), p.
1905222
.10.1002/adfm.201905222
124.
Lv
,
G.
,
Jensen
,
E.
,
Shen
,
C.
,
Yang
,
K.
,
Evans
,
C. M.
, and
Cahill
,
D. G.
,
2021
, “
Effect of Amine Hardener Molecular Structure on the Thermal Conductivity of Epoxy Resins
,”
ACS Appl. Polym. Mater.
,
3
(
1
), pp.
259
267
.10.1021/acsapm.0c01074
125.
Xie
,
X.
,
Yang
,
K. X.
,
Li
,
D. Y.
,
Tsai
,
T. H.
,
Shin
,
J.
,
Braun
,
P. V.
, and
Cahill
,
D. G.
,
2017
, “
High and Low Thermal Conductivity of Amorphous Macromolecules
,”
Phys. Rev. B
,
95
(
3
), p.
035406
.10.1103/PhysRevB.95.035406
126.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R. T.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibres With Very High Thermal Conductivities
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
251
255
.10.1038/nnano.2010.27
127.
Xu
,
Y. F.
,
Wang
,
X. X.
,
Zhou
,
J. W.
,
Song
,
B.
,
Jiang
,
Z.
,
Lee
,
E. M. Y.
,
Huberman
,
K. K.
,
Gleason
,
S.
, and
Chen
,
G.
,
2018
, “
Molecular Engineered Conjugated Polymer With High Thermal Conductivity
,”
Sci. Adv.
,
4
(
3
), p.
eaar3031
.10.1126/sciadv.aar3031
128.
Chang
,
H. C.
,
Rajagopal
,
M. C.
,
Hoque
,
M. J.
,
Oh
,
J.
,
Li
,
L.
,
Li
,
J.
,
Zhao
,
H.
, et al.,
2020
, “
Composite Structured Surfaces for Durable Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
156
, p.
119890
.10.1016/j.ijheatmasstransfer.2020.119890
129.
Donati
,
M.
,
Lam
,
C. W. E.
,
Milionis
,
A.
,
Sharma
,
C. S.
,
Tripathy
,
A.
,
Zendeli
,
A.
, and
Poulikakos
,
D.
,
2021
, “
Sprayable Thin and Robust Carbon Nanofiber Composite Coating for Extreme Jumping Dropwise Condensation Performance
,”
Adv. Mater. Interfaces
,
8
(
1
), p.
2001176
.10.1002/admi.202001176
130.
Wilke
,
K. L.
,
Antao
,
D. S.
,
Cruz
,
S.
,
Iwata
,
R.
,
Zhao
,
Y.
,
Leroy
,
A.
,
Preston
,
D. J.
, and
Wang
,
E. N.
,
2020
, “
Polymer Infused Porous Surfaces for Robust, Thermally Conductive, Self-Healing Coatings for Dropwise Condensation
,”
ACS Nano
,
14
(
11
), pp.
14878
14886
.10.1021/acsnano.0c03961
131.
Preston
,
D. J.
,
Mafra
,
D. L.
,
Miljkovic
,
N.
,
Kong
,
J.
, and
Wang
,
E. N.
,
2015
, “
Scalable Graphene Coatings for Enhanced Condensation Heat Transfer
,”
Nano Lett.
,
15
(
5
), pp.
2902
2909
.10.1021/nl504628s
132.
Ma
,
J.
,
Porath
,
L.
,
Haque
,
M. F.
,
Sett
,
S.
,
Rabbi
,
K. F.
,
Nam
,
S.
,
Miljkovic
,
N.
, and
Evans
,
C.
,
2021
, “
Ultra-Thin Self-Healing Vitrimer Coatings for Durable Hydrophobicity
,”
Nat. Commun.
,
12
(
1
), p.
5210
.10.1038/s41467-021-25508-4
133.
Sofla
,
A.
,
Seker
,
E.
,
Landers
,
J. P.
, and
Begley
,
M. R.
,
2010
, “
PDMS-Glass Interface Adhesion Energy Determined Via Comprehensive Solutions for Thin Film Bulge/Blister Tests
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031007
.10.1115/1.4000428
134.
Jensen
,
H. M.
,
1991
, “
The Blister Test for Interface Toughness Measurement
,”
Eng. Fract. Mech.
,
40
(
3
), pp.
475
486
.10.1016/0013-7944(91)90144-P
135.
Chang
,
W.
,
Peng
,
B.
,
Egab
,
K.
,
Zhang
,
Y.
,
Cheng
,
Y.
,
Li
,
X.
,
Ma
,
X.
, and
Li
,
C.
,
2021
, “
Few-Layer Graphene on Nickel Enabled Sustainable Dropwise Condensation
,”
Sci. Bull.
,
66
(
18
), pp.
1877
1884
.10.1016/j.scib.2021.06.006
136.
Peng
,
C. Y.
,
Chen
,
Z. Y.
, and
Tiwari
,
M. K.
,
2018
, “
All-Organic Superhydrophobic Coatings With Mechanochemical Robustness and Liquid Impalement Resistance
,”
Nat. Mater.
,
17
(
4
), pp.
355
360
.10.1038/s41563-018-0044-2
137.
Liu
,
Q. H.
,
Nian
,
G. D.
,
Yang
,
C. H.
,
Qu
,
S. X.
, and
Suo
,
Z. G.
,
2018
, “
Bonding Dissimilar Polymer Networks in Various Manufacturing Processes
,”
Nat. Commun.
,
9
(
1
), p.
846
.10.1038/s41467-018-03269-x
138.
Wilson
,
G. O.
,
Caruso
,
M. M.
,
Schelkopf
,
S. R.
,
Sottos
,
N. R.
,
White
,
S. R.
, and
Moore
,
J. S.
,
2011
, “
Adhesion Promotion Via Noncovalent Interactions in Self-Healing Polymers
,”
ACS Appl. Mater. Interfaces
,
3
(
8
), pp.
3072
3077
.10.1021/am200584z
139.
Gao
,
J.
,
Chen
,
T. L.
,
Dong
,
C.
,
Jia
,
Y. W.
,
Mak
,
P. I.
,
Vai
,
M. I.
, and
Martin
,
R. P.
,
2015
, “
Adhesion Promoter for a Multi-Dielectric-Layer on a Digital Microfluidic Chip
,”
RSC Adv.
,
5
(
60
), pp.
48626
48630
.10.1039/C5RA08202A
140.
Dietrich
,
P. M.
,
Streeck
,
C.
,
Glamsch
,
S.
,
Ehlert
,
C.
,
Lippitz
,
A.
,
Nutsch
,
A.
,
Kulak
,
N.
,
Beckhoff
,
B.
, and
Unger
,
W. E. S.
,
2015
, “
Quantification of Silane Molecules on Oxidized Silicon: Are There Options for a Traceable and Absolute Determination?
,”
Anal. Chem.
,
87
(
19
), pp.
10117
10124
.10.1021/acs.analchem.5b02846
141.
White
,
S. R.
,
Sottos
,
N. R.
,
Geubelle
,
P. H.
,
Moore
,
J. S.
,
Kessler
,
M. R.
,
Sriram
,
S. R.
,
Brown
,
E. N.
, and
Viswanathan
,
S.
,
2001
, “
Autonomic Healing of Polymer Composites
,”
Nature
,
409
(
6822
), pp.
794
797
.10.1038/35057232
142.
Toohey
,
K. S.
,
Sottos
,
N. R.
,
Lewis
,
J. A.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2007
, “
Self-Healing Materials With Microvascular Networks
,”
Nat. Mater.
,
6
(
8
), pp.
581
585
.10.1038/nmat1934
143.
Blaiszik
,
B. J.
,
Kramer
,
S. L. B.
,
Olugebefola
,
S. C.
,
Moore
,
J. S.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2010
, “
Self-Healing Polymers and Composites
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
179
211
.10.1146/annurev-matsci-070909-104532
144.
Wang
,
S. Y.
, and
Urban
,
M. W.
,
2020
, “
Self-Healing Polymers
,”
Nat. Rev. Mater.
,
5
(
8
), pp.
562
583
.10.1038/s41578-020-0202-4
145.
Scheutz
,
G. M.
,
Lessard
,
J. J.
,
Sims
,
M. B.
, and
Sumerlin
,
B. S.
,
2019
, “
Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets
,”
J. Am. Chem. Soc.
,
141
(
41
), pp.
16181
16196
.10.1021/jacs.9b07922
146.
Denissen
,
W.
,
Winne
,
J. M.
, and
Du Prez
,
F. E.
,
2016
, “
Vitrimers: Permanent Organic Networks With Glass-Like Fluidity
,”
Chem. Sci.
,
7
(
1
), pp.
30
38
.10.1039/C5SC02223A
147.
Guerre
,
M.
,
Taplan
,
C.
,
Winne
,
J. M.
, and
Du Prez
,
F. E.
,
2020
, “
Vitrimers: Directing Chemical Reactivity to Control Material Properties
,”
Chem. Sci.
,
11
(
19
), pp.
4855
4870
.10.1039/D0SC01069C
148.
Capelot
,
M.
,
Montarnal
,
D.
,
Tournilhac
,
F.
, and
Leibler
,
L.
,
2012
, “
Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets
,”
J. Am. Chem. Soc.
,
134
(
18
), pp.
7664
7667
.10.1021/ja302894k
149.
Lessard
,
J. J.
,
Scheutz
,
G. M.
,
Sung
,
S. H.
,
Lantz
,
K. A.
,
Epps
,
T. H.
, and
Sumerlin
,
B. S.
,
2020
, “
Block Copolymer Vitrimers
,”
J. Am. Chem. Soc.
,
142
(
1
), pp.
283
289
.10.1021/jacs.9b10360
150.
Legrand
,
A.
, and
Soulie-Ziakovic
,
C.
,
2016
, “
Silica-Epoxy Vitrimer Nanocomposites
,”
Macromolecules
,
49
(
16
), pp.
5893
5902
.10.1021/acs.macromol.6b00826
151.
Taplan
,
C.
,
Guerre
,
M.
,
Winne
,
J. M.
, and
Du Prez
,
F. E.
,
2020
, “
Fast Processing of Highly Crosslinked, Low-Viscosity Vitrimers
,”
Mater. Horiz.
,
7
(
1
), pp.
104
110
.10.1039/C9MH01062A
152.
Li
,
L. Q.
,
Chen
,
X.
,
Jin
,
K. L.
, and
Torkelson
,
J. M.
,
2018
, “
Vitrimers Designed Both to Strongly Suppress Creep and to Recover Original Cross-Link Density After Reprocessing: Quantitative Theory and Experiments
,”
Macromolecules
,
51
(
15
), pp.
5537
5546
.10.1021/acs.macromol.8b00922
153.
Hass
,
K. C.
,
Schneider
,
W. F.
,
Curioni
,
A.
, and
Andreoni
,
W.
,
1998
, “
The Chemistry of Water on Alumina Surfaces: Reaction Dynamics From First Principles
,”
Science
,
282
(
5387
), pp.
265
268
.10.1126/science.282.5387.265
154.
Azimi
,
G.
,
Dhiman
,
R.
,
Kwon
,
H. M.
,
Paxson
,
A. T.
, and
Varanasi
,
K. K.
,
2013
, “
Hydrophobicity of Rare-Earth Oxide Ceramics
,”
Nat. Mater.
,
12
(
4
), pp.
315
320
.10.1038/nmat3545
155.
Preston
,
D. J.
,
Miljkovic
,
N.
,
Sack
,
J.
,
Enright
,
R.
,
Queeney
,
J.
, and
Wang
,
E. N.
,
2014
, “
Effect of Hydrocarbon Adsorption on the Wettability of Rare Earth Oxide Ceramics
,”
Appl. Phys. Lett.
,
105
(
1
), p.
011601
.10.1063/1.4886410
156.
Bhowmick
,
S.
,
Sen
,
F.
,
Banerji
,
A.
, and
Alpas
,
A.
,
2015
, “
Friction and Adhesion of Fluorine Containing Hydrophobic Hydrogenated Diamond-Like Carbon (FH-DLC) Coating Against Magnesium Alloy AZ91
,”
Surf. Coat. Technol.
,
267
, pp.
21
31
.10.1016/j.surfcoat.2014.11.047
157.
Butter
,
R. S.
,
Waterman
,
D. R.
,
Lettington
,
A. H.
,
Ramos
,
R. T.
, and
Fordham
,
E. J.
,
1997
, “
Production and Wetting Properties of Fluorinated Diamond-Like Carbon Coatings
,”
Thin Solid Films
,
311
(
1–2
), pp.
107
113
.10.1016/S0040-6090(97)00337-4
158.
Ryu
,
H.
,
Kim
,
J.
,
Kim
,
J.
,
Kim
,
D. H.
,
Kang
,
Y. J.
,
Jang
,
Y. J.
, and
Jeong
,
J. H.
,
2020
, “
Enhancement of a Heat Transfer Performance on the Al6061 Surface Using Microstructures and Fluorine-Doped Diamond-Like Carbon (F-DLC) Coating
,”
Int. J. Heat Mass Transfer
,
148
, p.
119108
.10.1016/j.ijheatmasstransfer.2019.119108
159.
Torresin
,
D.
,
Tiwari
,
M. K.
,
Del Col
,
D.
, and
Poulikakos
,
D.
,
2013
, “
Flow Condensation on Copper-Based Nanotextured Superhydrophobic Surfaces
,”
Langmuir
,
29
(
2
), pp.
840
848
.10.1021/la304389s
160.
Tawfick
,
S.
,
Hart
,
A. J.
, and
De Volder
,
M.
,
2012
, “
Capillary Bending of Janus Carbon Nanotube Micropillars
,”
Nanoscale
,
4
(
13
), pp.
3852
3856
.10.1039/c2nr30802a
161.
Lin
,
L.
,
Liu
,
M.
,
Chen
,
L.
,
Chen
,
P.
,
Ma
,
J.
,
Han
,
D.
, and
Jiang
,
L.
,
2010
, “
Bio-Inspired Hierarchical Macromolecule–Nanoclay Hydrogels for Robust Underwater Superoleophobicity
,”
Adv. Mater.
,
22
(
43
), pp.
4826
4830
.10.1002/adma.201002192
162.
Wu
,
X.
,
Fu
,
Q.
,
Kumar
,
D.
,
Ho
,
J. W. C.
,
Kanhere
,
P.
,
Zhou
,
H.
, and
Chen
,
Z.
,
2016
, “
Mechanically Robust Superhydrophobic and Superoleophobic Coatings Derived by Sol–Gel Method
,”
Mater. Des.
,
89
, pp.
1302
1309
.10.1016/j.matdes.2015.10.053
163.
Xu
,
L.-P.
,
Peng
,
J.
,
Liu
,
Y.
,
Wen
,
Y.
,
Zhang
,
X.
,
Jiang
,
L.
, and
Wang
,
S.
,
2013
, “
Nacre-Inspired Design of Mechanical Stable Coating With Underwater Superoleophobicity
,”
ACS Nano
,
7
(
6
), pp.
5077
5083
.10.1021/nn400650f
164.
Tian
,
X.
,
Verho
,
T.
, and
Ras
,
R. H. A.
,
2016
, “
Moving Superhydrophobic Surfaces Toward Real-World Applications
,”
Science
,
352
(
6282
), pp.
142
143
.10.1126/science.aaf2073
165.
Hoshian
,
S.
,
Jokinen
,
V.
, and
Franssila
,
S.
,
2016
, “
Robust Hybrid Elastomer/Metal-Oxide Superhydrophobic Surface
,”
Soft Matter
,
12
(
31
), pp.
6526
6535
.10.1039/C6SM01095D
166.
Han
,
J.
,
Cai
,
M.
,
Lin
,
Y.
,
Liu
,
W.
,
Luo
,
X.
,
Zhang
,
H.
,
Wang
,
K.
, and
Zhong
,
M.
,
2018
, “
Comprehensively Durable Superhydrophobic Metallic Hierarchical Surfaces Via Tunable Micro-Cone Design to Protect Functional Nanostructures
,”
RSC Adv.
,
8
(
12
), pp.
6733
6744
.10.1039/C7RA13496G
167.
Qahtan
,
T. F.
,
Gondal
,
M. A.
,
Alade
,
I. O.
, and
Dastageer
,
M. A.
,
2017
, “
Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion
,”
Sci. Rep.
,
7
(
1
), p.
7531
.10.1038/s41598-017-06753-4
168.
Simovich
,
T.
,
Wu
,
A. H.
, and
Lamb
,
R. N.
,
2014
, “
Energy Efficient One-Pot Synthesis of Durable Superhydrophobic Coating Through Nylon Micro-Rods
,”
Appl. Surf. Sci.
,
295
, pp.
203
206
.10.1016/j.apsusc.2014.01.040
169.
Zhang
,
W.
,
Xiang
,
T.
,
Liu
,
F.
,
Zhang
,
F.
,
Zhang
,
M.
,
Gan
,
W.
,
Zhai
,
X.
, et al.,
2017
, “
Facile Design and Fabrication of Superwetting Surfaces With Excellent Wear-Resistance
,”
ACS Appl. Mater. Interfaces
,
9
(
18
), pp.
15776
15784
.10.1021/acsami.7b02158
170.
Wang
,
D.
,
Sun
,
Q.
,
Hokkanen
,
M. J.
,
Zhang
,
C.
,
Lin
,
F.-Y.
,
Liu
,
Q.
,
Zhu
,
S.-P.
, et al.,
2020
, “
Design of Robust Superhydrophobic Surfaces
,”
Nature
,
582
(
7810
), pp.
55
59
.10.1038/s41586-020-2331-8
171.
Tian
,
X.
,
Shaw
,
S.
,
Lind
,
K. R.
, and
Cademartiri
,
L.
,
2016
, “
Thermal Processing of Silicones for Green, Scalable, and Healable Superhydrophobic Coatings
,”
Adv. Mater.
,
28
(
19
), pp.
3677
3682
.10.1002/adma.201506446
172.
Milionis
,
A.
,
Languasco
,
J.
,
Loth
,
E.
, and
Bayer
,
I. S.
,
2015
, “
Analysis of Wear Abrasion Resistance of Superhydrophobic Acrylonitrile Butadiene Styrene Rubber (ABS) Nanocomposites
,”
Chem. Eng. J.
,
281
, pp.
730
738
.10.1016/j.cej.2015.06.086
173.
Steele
,
A.
,
Nayak
,
B. K.
,
Davis
,
A.
,
Gupta
,
M. C.
, and
Loth
,
E.
,
2013
, “
Linear Abrasion of a Titanium Superhydrophobic Surface Prepared by Ultrafast Laser Microtexturing
,”
J. Micromech. Microeng.
,
23
(
11
), p.
115012
.10.1088/0960-1317/23/11/115012
174.
Zhu
,
X.
,
Zhang
,
Z.
,
Men
,
X.
,
Yang
,
J.
,
Wang
,
K.
,
Xu
,
X.
,
Zhou
,
X.
, and
Xue
,
Q.
,
2011
, “
Robust Superhydrophobic Surfaces With Mechanical Durability and Easy Repairability
,”
J. Mater. Chem.
,
21
(
39
), pp.
15793
15797
.10.1039/c1jm12513c
175.
Xiang
,
T.
,
Han
,
Y.
,
Guo
,
Z.
,
Wang
,
R.
,
Zheng
,
S.
,
Li
,
S.
,
Li
,
C.
, and
Dai
,
X.
,
2018
, “
Fabrication of Inherent Anticorrosion Superhydrophobic Surfaces on Metals
,”
ACS Sustainable Chem. Eng.
,
6
(
4
), pp.
5598
5606
.10.1021/acssuschemeng.8b00639
176.
Golovin
,
K.
,
Boban
,
M.
,
Mabry
,
J. M.
, and
Tuteja
,
A.
,
2017
, “
Designing Self-Healing Superhydrophobic Surfaces With Exceptional Mechanical Durability
,”
ACS Appl. Mater. Interfaces
,
9
(
12
), pp.
11212
11223
.10.1021/acsami.6b15491
177.
Zhang
,
Z.
,
Ge
,
B.
,
Men
,
X.
, and
Li
,
Y.
,
2016
, “
Mechanically Durable, Superhydrophobic Coatings Prepared by Dual-Layer Method for Anti-Corrosion and Self-Cleaning
,”
Colloids Surf., A
,
490
, pp.
182
188
.10.1016/j.colsurfa.2015.11.049
178.
Yamauchi
,
Y.
,
Tenjimbayashi
,
M.
,
Samitsu
,
S.
, and
Naito
,
M.
,
2019
, “
Durable and Flexible Superhydrophobic Materials: Abrasion/Scratching/Slicing/Droplet Impacting/Bending/Twisting-Tolerant Composite With Porcupinefish-Like Structure
,”
ACS Appl. Mater. Interfaces
,
11
(
35
), pp.
32381
32389
.10.1021/acsami.9b09524
179.
Zhang
,
X.
,
Liu
,
Z.
,
Li
,
Y.
,
Cui
,
Y.
,
Wang
,
H.
, and
Wang
,
J.
,
2020
, “
Durable Superhydrophobic Surface Prepared by Designing ‘Micro-Eggshell’ and ‘Web-Like’ Structures
,”
Chem. Eng. J.
,
392
, p.
123741
.10.1016/j.cej.2019.123741
180.
Jain
,
R.
, and
Pitchumani
,
R.
,
2018
, “
Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces Via Electrodeposition
,”
Langmuir
,
34
(
10
), pp.
3159
3169
.10.1021/acs.langmuir.7b02227
181.
Khodakarami
,
S.
,
Zhao
,
H.
,
Rabbi
,
K. F.
, and
Miljkovic
,
N.
,
2021
, “
Scalable Corrosion-Resistant Coatings for Thermal Applications
,”
ACS Appl. Mater. Interfaces
,
13
(
3
), pp.
4519
4534
.10.1021/acsami.0c19683
182.
Li
,
H.
,
Yu
,
S.
,
Hu
,
J.
, and
Yin
,
X.
,
2019
, “
Modifier-Free Fabrication of Durable Superhydrophobic Electrodeposited Cu-Zn Coating on Steel Substrate With Self-Cleaning, Anti-Corrosion and Anti-Scaling Properties
,”
Appl. Surf. Sci.
,
481
, pp.
872
882
.10.1016/j.apsusc.2019.03.123
183.
Yao
,
C.-W.
,
Sebastian
,
D.
,
Lian
,
I.
,
Günaydın-Şen
,
Ö.
,
Clarke
,
R.
,
Clayton
,
K.
,
Chen
,
C.-Y.
,
Kharel
,
K.
,
Chen
,
Y.
, and
Li
,
Q.
,
2018
, “
Corrosion Resistance and Durability of Superhydrophobic Copper Surface in Corrosive NaCl Aqueous Solution
,”
Coatings
,
8
(
2
), p.
70
.10.3390/coatings8020070
184.
Cohen
,
N.
,
Dotan
,
A.
,
Dodiuk
,
H.
, and
Kenig
,
S.
,
2016
, “
Superhydrophobic Coatings and Their Durability
,”
Mater. Manuf. Processes
,
31
(
9
), pp.
1143
1155
.10.1080/10426914.2015.1090600
185.
Vazirinasab
,
E.
,
Jafari
,
R.
, and
Momen
,
G.
,
2018
, “
Application of Superhydrophobic Coatings as a Corrosion Barrier: A Review
,”
Surf. Coat. Technol.
,
341
, pp.
40
56
.10.1016/j.surfcoat.2017.11.053
186.
Vengatesh
,
P.
, and
Kulandainathan
,
M. A.
,
2015
, “
Hierarchically Ordered Self-Lubricating Superhydrophobic Anodized Aluminum Surfaces With Enhanced Corrosion Resistance
,”
ACS Appl. Mater. Interfaces
,
7
(
3
), pp.
1516
1526
.10.1021/am506568v
187.
Feng
,
L.
,
Zhang
,
H.
,
Wang
,
Z.
, and
Liu
,
Y.
,
2014
, “
Superhydrophobic Aluminum Alloy Surface: Fabrication, Structure, and Corrosion Resistance
,”
Colloids Surf., A
,
441
, pp.
319
325
.10.1016/j.colsurfa.2013.09.014
188.
Zang
,
D.
,
Zhu
,
R.
,
Zhang
,
W.
,
Yu
,
X.
,
Lin
,
L.
,
Guo
,
X.
,
Liu
,
M.
, and
Jiang
,
L.
,
2017
, “
Corrosion-Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod
,”
Adv. Funct. Mater.
,
27
(
8
), p.
1605446
.10.1002/adfm.201605446
189.
Su
,
F.
, and
Yao
,
K.
,
2014
, “
Facile Fabrication of Superhydrophobic Surface With Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method
,”
ACS Appl. Mater. Interfaces
,
6
(
11
), pp.
8762
8770
.10.1021/am501539b
190.
Liang
,
J.
,
Hu
,
Y.
,
Wu
,
Y.
, and
Chen
,
H.
,
2014
, “
Facile Formation of Superhydrophobic Silica-Based Surface on Aluminum Substrate With Tetraethylorthosilicate and Vinyltriethoxysilane as Co-Precursor and Its Corrosion Resistant Performance in Corrosive NaCl Aqueous Solution
,”
Surf. Coat. Technol.
,
240
, pp.
145
153
.10.1016/j.surfcoat.2013.12.028
191.
Chen
,
X.
,
Wang
,
P.
, and
Zhang
,
D.
,
2019
, “
Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior
,”
ACS Appl. Mater. Interfaces
,
11
(
41
), pp.
38276
38284
.10.1021/acsami.9b11415
192.
Zhou
,
Y.
,
Ma
,
Y.
,
Sun
,
Y.
,
Xiong
,
Z.
,
Qi
,
C.
,
Zhang
,
Y.
, and
Liu
,
Y.
,
2019
, “
Robust Superhydrophobic Surface Based on Multiple Hybrid Coatings for Application in Corrosion Protection
,”
ACS Appl. Mater. Interfaces
,
11
(
6
), pp.
6512
6526
.10.1021/acsami.8b19663
193.
Liu
,
H.
,
Szunerits
,
S.
,
Xu
,
W.
, and
Boukherroub
,
R.
,
2009
, “
Preparation of Superhydrophobic Coatings on Zinc as Effective Corrosion Barriers
,”
ACS Appl. Mater. Interfaces
,
1
(
6
), pp.
1150
1153
.10.1021/am900100q
194.
Yin
,
X.
,
Mu
,
P.
,
Wang
,
Q.
, and
Li
,
J.
,
2020
, “
Superhydrophobic ZIF-8-Based Dual-Layer Coating for Enhanced Corrosion Protection of Mg Alloy
,”
ACS Appl. Mater. Interfaces
,
12
(
31
), pp.
35453
35463
.10.1021/acsami.0c09497
195.
Yuan
,
S.
,
Pehkonen
,
S. O.
,
Liang
,
B.
,
Ting
,
Y. P.
,
Neoh
,
K. G.
, and
Kang
,
E. T.
,
2011
, “
Superhydrophobic Fluoropolymer-Modified Copper Surface Via Surface Graft Polymerisation for Corrosion Protection
,”
Corros. Sci.
,
53
(
9
), pp.
2738
2747
.10.1016/j.corsci.2011.05.008
196.
Mousavi
,
S. M. A.
, and
Pitchumani
,
R.
,
2021
, “
A Study of Corrosion on Electrodeposited Superhydrophobic Copper Surfaces
,”
Corros. Sci.
,
186
, p.
109420
.10.1016/j.corsci.2021.109420
197.
Klein
,
H.
, and
Büchner
,
A.
,
2018
, “
Low-Finned Tubes for Condensation
,”
Innovative Heat Exchangers
,
Springer
, Cham, Switzerland, pp.
189
231
.
198.
Kumar
,
R.
,
Varma
,
H.
,
Mohanty
,
B.
, and
Agrawal
,
K.
,
2002
, “
Augmentation of Heat Transfer During Filmwise Condensation of Steam and R-134a Over Single Horizontal Finned Tubes
,”
Int. J. Heat Mass Transfer
,
45
(
1
), pp.
201
211
.10.1016/S0017-9310(01)00128-4
199.
Ho
,
J. Y.
, and
Leong
,
K. C.
,
2020
, “
Effect of Fin Pitch on the Filmwise Condensation of Steam on Three-Dimensional Conical Pin Fin Arrays: A Comparative Study
,”
Int. J. Heat Mass Transfer
,
150
, p.
119328
.10.1016/j.ijheatmasstransfer.2020.119328
200.
Park
,
K.-C.
,
Kim
,
P.
,
Grinthal
,
A.
,
He
,
N.
,
Fox
,
D.
,
Weaver
,
J. C.
, and
Aizenberg
,
J.
,
2016
, “
Condensation on Slippery Asymmetric Bumps
,”
Nature
,
531
(
7592
), pp.
78
82
.10.1038/nature16956
201.
Qi
,
Z.
,
2013
, “
Water Retention and Drainage on Air Side of Heat Exchangers—A Review
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
1
10
.10.1016/j.rser.2013.07.014
202.
Al-Karaghouli
,
A.
, and
Kazmerski
,
L. L.
,
2013
, “
Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
343
356
.10.1016/j.rser.2012.12.064
203.
Katzen
,
R.
,
Madson
,
P.
, and
Moon
,
G.
, Jr.
,
1999
,
Ethanol Distillation: The Fundamentals
,
Katzen International
, Norwood, OH.
204.
Speight
,
J. G.
,
2011
, “
Chapter 4—Distillation
,”
The Refinery of the Future
,
J. G.
Speight
, ed.,
William Andrew Publishing
,
Boston
, pp.
117
145
.
205.
Goto
,
M.
,
Inoue
,
N.
, and
Ishiwatari
,
N.
,
2001
, “
Condensation and Evaporation Heat Transfer of R410A Inside Internally Grooved Horizontal Tubes
,”
Int. J. Refrig.
,
24
(
7
), pp.
628
638
.10.1016/S0140-7007(00)00087-6
206.
Kruzel
,
M.
,
Bohdal
,
T.
, and
Sikora
,
M.
,
2020
, “
Heat Transfer and Pressure Drop During Refrigerants Condensation in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
161
, p.
120283
.10.1016/j.ijheatmasstransfer.2020.120283
207.
Zhang
,
Z.
,
Li
,
Q.
,
Xu
,
T.
,
Fang
,
X.
, and
Gao
,
X.
,
2012
, “
Condensation Heat Transfer Characteristics of Zeotropic Refrigerant Mixture R407C on Single, Three-Row Petal-Shaped Finned Tubes and Helically Baffled Condenser
,”
Appl. Therm. Eng.
,
39
, pp.
63
69
.10.1016/j.applthermaleng.2012.01.021
208.
Boyko
,
L.
, and
Kruzhilin
,
G.
,
1967
, “
Heat Transfer and Hydraulic Resistance During Condensation of Steam in a Horizontal Tube and in a Bundle of Tubes
,”
Int. J. Heat Mass Transfer
,
10
(
3
), pp.
361
373
.10.1016/0017-9310(67)90152-4
209.
Traubert
,
T. D.
, and
Jur
,
T. A.
,
2012
, “
Metallurgical Analysis to Evaluate Cracking in a 316 L Grade Stainless Steel Spiral Heat Exchanger
,”
J. Failure Anal. Prev.
,
12
(
2
), pp.
198
203
.10.1007/s11668-012-9544-6
210.
Muneeshwaran
,
M.
, and
Wang
,
C.-C.
,
2021
, “
Superhydrophobic Fins With Inclined Arrangement for Enhancing Energy Saving of Air-Cooled Wet Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
178
, p.
121636
.10.1016/j.ijheatmasstransfer.2021.121636
211.
Ma, X., Ding, G., Zhang, Y., and Wang., K., 2007, “Effects of Hydrophilic Coating on Air Side Heat Transfer and Friction Characteristics of Wavy Fin and Tube Heat Exchangers Under Dehumidifying Conditions,”
Energy Convers. Manag.
, 48(9), pp. 2525–2532.1016/j.enconman.2007.03.017
212.
Wang
,
S.
,
Yu
,
X.
,
Liang
,
C.
, and
Zhang
,
Y.
,
2018
, “
Enhanced Condensation Heat Transfer in Air-Conditioner Heat Exchanger Using Superhydrophobic Foils
,”
Appl. Therm. Eng.
,
137
, pp.
758
766
.10.1016/j.applthermaleng.2018.04.020
213.
Boyina
,
K. S.
,
Mahvi
,
A. J.
,
Chavan
,
S.
,
Park
,
D.
,
Kumar
,
K.
,
Lira
,
M.
,
Yu
,
Y.
,
Gunay
,
A. A.
,
Wang
,
X.
, and
Miljkovic
,
N.
,
2019
, “
Condensation Frosting on Meter-Scale Superhydrophobic and Superhydrophilic Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
145
, p.
118694
.10.1016/j.ijheatmasstransfer.2019.118694
214.
Mahvi
,
A. J.
,
Boyina
,
K.
,
Musser
,
A.
,
Elbel
,
S.
, and
Miljkovic
,
N.
,
2021
, “
Superhydrophobic Heat Exchangers Delay Frost Formation and Enhance Efficiency of Electric Vehicle Heat Pumps
,”
Int. J. Heat Mass Transfer
,
172
, p.
121162
.10.1016/j.ijheatmasstransfer.2021.121162
215.
Jhee
,
S.
,
Lee
,
K.-S.
, and
Kim
,
W.-S.
,
2002
, “
Effect of Surface Treatments on the Frosting/Defrosting Behavior of a Fin-Tube Heat Exchanger
,”
Int. J. Refrig.
,
25
(
8
), pp.
1047
1053
.10.1016/S0140-7007(02)00008-7
216.
Wang
,
F.
,
Liang
,
C.
,
Yang
,
M.
,
Fan
,
C.
, and
Zhang
,
X.
,
2015
, “
Effects of Surface Characteristic on Frosting and Defrosting Behaviors of Fin-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
75
, pp.
1126
1132
.10.1016/j.applthermaleng.2014.10.090
217.
Liang
,
C.
,
Wang
,
F.
,
,
Y.
,
Wu
,
C.
,
Zhang
,
X.
, and
Zhang
,
Y.
,
2015
, “
Experimental Study of the Effects of Fin Surface Characteristics on Defrosting Behavior
,”
Appl. Therm. Eng.
,
75
, pp.
86
92
.10.1016/j.applthermaleng.2014.09.082
218.
Rabbi
,
K. F.
,
Boyina
,
K. S.
,
Su
,
W.
,
Sett
,
S.
,
Thamban
,
A.
,
Shahane
,
S.
,
Wang
,
S.
, and
Miljkovic
,
N.
,
2021
, “
Wettability-Defined Frosting Dynamics Between Plane Fins in Quiescent Air
,”
Int. J. Heat Mass Transfer
,
164
, p.
120563
.10.1016/j.ijheatmasstransfer.2020.120563
219.
Li
,
L.
,
Lin
,
Y.
,
Fazle Rabbi
,
K. F.
,
Ma
,
J.
,
Chen
,
Z.
,
Patel
,
A.
,
Su
,
W.
, et al.,
2021
, “
Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces
,”
ACS Appl. Mater. Interfaces
,
13
(
36
), pp.
43489
43504
.10.1021/acsami.1c08051
220.
Li
,
J.
,
Kang
,
D.
,
Rabbi
,
K. F.
,
Fu
,
W.
,
Yan
,
X.
,
Fang
,
X.
,
Fan
,
L.
, and
Miljkovic
,
N.
,
2021
, “
Liquid Film-Induced Critical Heat Flux Enhancement on Structured Surfaces
,”
Sci. Adv.
,
7
(
26
), p.
eabg4537
.10.1126/sciadv.abg4537
221.
Wang
,
Y.
,
Xue
,
J.
,
Wang
,
Q.
,
Chen
,
Q.
, and
Ding
,
J.
,
2013
, “
Verification of Icephobic/Anti-Icing Properties of a Superhydrophobic Surface
,”
ACS Appl. Mater. Interfaces
,
5
(
8
), pp.
3370
3381
.10.1021/am400429q
222.
Yin
,
L.
,
Wang
,
Y.
,
Ding
,
J.
,
Wang
,
Q.
, and
Chen
,
Q.
,
2012
, “
Water Condensation on Superhydrophobic Aluminum Surfaces With Different Low-Surface-Energy Coatings
,”
Appl. Surf. Sci.
,
258
(
8
), pp.
4063
4068
.10.1016/j.apsusc.2011.12.100
223.
Zuo
,
Z.
,
Liao
,
R.
,
Guo
,
C.
,
Yuan
,
Y.
,
Zhao
,
X.
,
Zhuang
,
A.
, and
Zhang
,
Y.
,
2015
, “
Fabrication and Anti-Icing Property of Coral-Like Superhydrophobic Aluminum Surface
,”
Appl. Surf. Sci.
,
331
, pp.
132
139
.10.1016/j.apsusc.2015.01.066
224.
Sharma
,
C. S.
,
Combe
,
J.
,
Giger
,
M.
,
Emmerich
,
T.
, and
Poulikakos
,
D.
,
2017
, “
Growth Rates and Spontaneous Navigation of Condensate Droplets Through Randomly Structured Textures
,”
ACS Nano
,
11
(
2
), pp.
1673
1682
.10.1021/acsnano.6b07471
225.
Chu
,
F.
, and
Wu
,
X.
,
2016
, “
Fabrication and Condensation Characteristics of Metallic Superhydrophobic Surface With Hierarchical Micro-Nano Structures
,”
Appl. Surf. Sci.
,
371
, pp.
322
328
.10.1016/j.apsusc.2016.02.208
226.
Saffari
,
H.
,
Sohrabi
,
B.
,
Noori
,
M. R.
, and
Bahrami
,
H. R. T.
,
2018
, “
Optimal Condition for Fabricating Superhydrophobic Aluminum Surfaces With Controlled Anodizing Processes
,”
Appl. Surf. Sci.
,
435
, pp.
1322
1328
.10.1016/j.apsusc.2017.11.188
227.
Zhao
,
Y.
,
Luo
,
Y.
,
Li
,
J.
,
Yin
,
F.
,
Zhu
,
J.
, and
Gao
,
X.
,
2015
, “
Condensate Microdrop Self-Propelling Aluminum Surfaces Based on Controllable Fabrication of Alumina Rod-Capped Nanopores
,”
ACS Appl. Mater. Interfaces
,
7
(
21
), pp.
11079
11082
.10.1021/acsami.5b03016
228.
Xi
,
J.
,
Feng
,
L.
, and
Jiang
,
L.
,
2008
, “
A General Approach for Fabrication of Superhydrophobic and Superamphiphobic Surfaces
,”
Appl. Phys. Lett.
,
92
(
5
), p.
053102
.10.1063/1.2839403
229.
Chen
,
X.
,
Kong
,
L.
,
Dong
,
D.
,
Yang
,
G.
,
Yu
,
L.
,
Chen
,
J.
, and
Zhang
,
P.
,
2009
, “
Synthesis and Characterization of Superhydrophobic Functionalized Cu(OH)2 Nanotube Arrays on Copper Foil
,”
Appl. Surf. Sci.
,
255
(
7
), pp.
4015
4019
.10.1016/j.apsusc.2008.10.104
230.
Luo
,
Y.
,
Li
,
J.
,
Zhu
,
J.
,
Zhao
,
Y.
, and
Gao
,
X.
,
2015
, “
Fabrication of Condensate Microdrop Self‐Propelling Porous Films of Cerium Oxide Nanoparticles on Copper Surfaces
,”
Angew. Chem., Int. Ed.
,
54
(
16
), pp.
4876
4879
.10.1002/anie.201500137
231.
Yamamoto
,
R.
,
Kowalski
,
D.
,
Zhu
,
R.
,
Wada
,
K.
,
Sato
,
Y.
,
Kitano
,
S.
,
Zhu
,
C.
,
Aoki
,
Y.
, and
Habazaki
,
H.
,
2021
, “
Fabrication of Superhydrophobic Copper Metal Nanowire Surfaces With High Thermal Conductivity
,”
Appl. Surf. Sci.
,
537
, p.
147854
.10.1016/j.apsusc.2020.147854
232.
Li
,
L.
,
Breedveld
,
V.
, and
Hess
,
D. W.
,
2012
, “
Creation of Superhydrophobic Stainless Steel Surfaces by Acid Treatments and Hydrophobic Film Deposition
,”
ACS Appl. Mater. Interfaces
,
4
(
9
), pp.
4549
4556
.10.1021/am301666c
233.
Qu
,
M.
,
Zhang
,
B.
,
Song
,
S.
,
Chen
,
L.
,
Zhang
,
J.
, and
Cao
,
X.
,
2007
, “
Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution‐Immersion Process
,”
Adv. Funct. Mater.
,
17
(
4
), pp.
593
596
.10.1002/adfm.200600472
234.
Wang
,
N.
,
Xiong
,
D.
,
Deng
,
Y.
,
Shi
,
Y.
, and
Wang
,
K.
,
2015
, “
Mechanically Robust Superhydrophobic Steel Surface With Anti-Icing, UV-Durability, and Corrosion Resistance Properties
,”
ACS Appl. Mater. Interfaces
,
7
(
11
), pp.
6260
6272
.10.1021/acsami.5b00558
235.
Liu
,
Y.
,
Bai
,
Y.
,
Jin
,
J.
,
Tian
,
L.
,
Han
,
Z.
, and
Ren
,
L.
,
2015
, “
Facile Fabrication of Biomimetic Superhydrophobic Surface With Anti-Frosting on Stainless Steel Substrate
,”
Appl. Surf. Sci.
,
355
, pp.
1238
1244
.10.1016/j.apsusc.2015.08.027
236.
Boinovich
,
L. B.
,
Emelyanenko
,
A. M.
,
Ivanov
,
V. K.
, and
Pashinin
,
A. S.
,
2013
, “
Durable Icephobic Coating for Stainless Steel
,”
ACS Appl. Mater. Interfaces
,
5
(
7
), pp.
2549
2554
.10.1021/am3031272
237.
Chen
,
L. J.
,
Chen
,
M.
,
Zhou
,
H. D.
, and
Chen
,
J. M.
,
2008
, “
Preparation of Super-Hydrophobic Surface on Stainless Steel
,”
Appl. Surf. Sci.
,
255
(
5
), pp.
3459
3462
.10.1016/j.apsusc.2008.07.122
238.
Song
,
J.
,
Liu
,
X.
,
Lu
,
Y.
,
Wu
,
L.
, and
Xu
,
W.
,
2012
, “
A Rapid Two-Step Electroless Deposition Process to Fabricate Superhydrophobic Coatings on Steel Substrates
,”
J. Coat. Technol. Res.
,
9
(
5
), pp.
643
650
.10.1007/s11998-012-9431-9
239.
Guo
,
F.
,
Su
,
X.
,
Hou
,
G.
, and
Li
,
P.
,
2012
, “
Superhydrophobic Silver Surface With Dendrites Structure on Steel Substrate by a Facile Electroless Galvanic Deposition Process
,”
Appl. Surf. Sci.
,
258
(
11
), pp.
4906
4910
.10.1016/j.apsusc.2012.01.112
240.
Liang
,
J.
,
Li
,
D.
,
Wang
,
D.
,
Liu
,
K.
, and
Chen
,
L.
,
2014
, “
Preparation of Stable Superhydrophobic Film on Stainless Steel Substrate by a Combined Approach Using Electrodeposition and Fluorinated Modification
,”
Appl. Surf. Sci.
,
293
, pp.
265
270
.10.1016/j.apsusc.2013.12.147
241.
Brassard
,
J.-D.
,
Sarkar
,
D. K.
,
Perron
,
J.
,
Audibert-Hayet
,
A.
, and
Melot
,
D.
,
2015
, “
Nano-Micro Structured Superhydrophobic Zinc Coating on Steel for Prevention of Corrosion and Ice Adhesion
,”
J. Colloid Interface Sci.
,
447
, pp.
40
247
.
242.
Huang
,
L.
,
Song
,
J.
,
Lu
,
Y.
,
Chen
,
F.
,
Liu
,
X.
,
Jin
,
Z.
,
Zhao
,
D.
,
Carmalt
,
C. J.
, and
Parkin
,
I. P.
,
2017
, “
Superoleophobic Surfaces on Stainless Steel Substrates Obtained by Chemical Bath Deposition
,”
Micro Nano Lett.
,
12
(
2
), pp.
76
81
.10.1049/mnl.2016.0576
243.
Guo
,
M.
,
Kang
,
Z.
,
Li
,
W.
, and
Zhang
,
J.
,
2014
, “
A Facile Approach to Fabricate a Stable Superhydrophobic Film With Switchable Water Adhesion on Titanium Surface
,”
Surf. Coat. Technol.
,
239
, pp.
227
232
.10.1016/j.surfcoat.2013.11.047
244.
Lee
,
J.-W.
, and
Hwang
,
W.
,
2017
, “
Simple Fabrication of Superoleophobic Titanium Surfaces Via Hierarchical Microhorn/Nanoporous Structure Growth by Chemical Acid Etching and Anodization
,”
J. Alloys Compd.
,
728
, pp.
966
970
.10.1016/j.jallcom.2017.09.092
245.
Barthwal
,
S.
,
Kim
,
Y. S.
, and
Lim
,
S.-H.
,
2013
, “
Fabrication of Amphiphobic Surface by Using Titanium Anodization for Large-Area Three-Dimensional Substrates
,”
Journal of Colloid and Interface Science
, 400, pp.
123
129
.10.1016/j.jcis.2013.02.037
246.
Zhang
,
S.
,
Huang
,
J.
,
Tang
,
Y.
,
Li
,
S.
,
Ge
,
M.
,
Chen
,
Z.
,
Zhang
,
K.
, and
Lai
,
Y.
,
2017
, “
Understanding the Role of Dynamic Wettability for Condensate Microdrop Self‐Propelling Based on Designed Superhydrophobic TiO2 Nanostructures
,”
Small
,
13
(
4
), p.
1600687
.10.1002/smll.201600687
247.
Xiang
,
C.
,
Sun
,
L.
,
Wang
,
Y.
,
Wang
,
G.
,
Zhao
,
X.
, and
Zhang
,
S.
,
2017
, “
Large-Scale, Uniform, and Superhydrophobic Titania Nanotubes at the Inner Surface of 1000 mm Long Titanium Tubes
,”
J. Phys. Chem. C
,
121
(
28
), pp.
15448
15455
.10.1021/acs.jpcc.7b03124
248.
Gao
,
Y.
,
Sun
,
Y.
, and
Guo
,
D.
,
2014
, “
Facile Fabrication of Superhydrophobic Surfaces With Low Roughness on Ti–6Al–4V Substrates Via Anodization
,”
Appl. Surf. Sci.
,
314
, pp.
754
759
.10.1016/j.apsusc.2014.07.059
249.
Lai
,
Y.
,
Gao
,
X.
,
Zhuang
,
H.
,
Huang
,
J.
,
Lin
,
C.
, and
Jiang
,
L.
,
2009
, “
Designing Superhydrophobic Porous Nanostructures With Tunable Water Adhesion
,”
Adv. Mater.
,
21
(
37
), pp.
3799
3803
.10.1002/adma.200900686
250.
Lu
,
J.
,
Huang
,
T.
,
Liu
,
Z.
,
Zhang
,
X.
, and
Xiao
,
R.
,
2018
, “
Long-Term Wettability of Titanium Surfaces by Combined Femtosecond Laser Micro/Nano Structuring and Chemical Treatments
,”
Appl. Surf. Sci.
,
459
, pp.
257
262
.10.1016/j.apsusc.2018.08.004
251.
Lian
,
Z.
,
Xu
,
J.
,
Yu
,
Z.
,
Yu
,
P.
,
Ren
,
W.
,
Wang
,
Z.
, and
Yu
,
H.
,
2020
, “
Bioinspired Reversible Switch Between Underwater Superoleophobicity/Superaerophobicity and Oleophilicity/Aerophilicity and Improved Antireflective Property on the Nanosecond Laser-Ablated Superhydrophobic Titanium Surfaces
,”
ACS Appl. Mater. Interfaces
,
12
(
5
), pp.
6573
6580
.10.1021/acsami.9b17639
252.
Shen
,
Y.
,
Tao
,
J.
,
Tao
,
H.
,
Chen
,
S.
,
Pan
,
L.
, and
Wang
,
T.
,
2015
, “
Superhydrophobic Ti6Al4V Surfaces With Regular Array Patterns for Anti-Icing Applications
,”
RSC Adv.
,
5
(
41
), pp.
32813
32818
.10.1039/C5RA01365H
253.
Thulukkanam
,
K.
,
2013
,
Heat Exchanger Design Handbook
,
2
nd ed.,
CRC Press, Taylor and Francis Group
, Boca Raton, FL.
254.
Ma
,
M.
, and
Hill
,
R. M.
,
2006
, “
Superhydrophobic Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
11
(
4
), pp.
193
202
.10.1016/j.cocis.2006.06.002
255.
Zhang
,
Y.
,
Ge
,
D.
, and
Yang
,
S.
,
2014
, “
Spray-Coating of Superhydrophobic Aluminum Alloys With Enhanced Mechanical Robustness
,”
J. Colloid Interface Sci.
,
423
, pp.
101
107
.10.1016/j.jcis.2014.02.024
256.
Yang
,
Z.
,
Wu
,
Y.-Z.
,
Ye
,
Y.-F.
,
Gong
,
M.-G.
, and
Xu
,
X.-L.
,
2012
, “
A Simple Way to Fabricate an Aluminum Sheet With Superhydrophobic and Self-Cleaning Properties
,”
Chin. Phys. B
,
21
(
12
), p.
126801
.10.1088/1674-1056/21/12/126801
257.
Hong
,
K.
, and
Webb
,
R.
,
2000
, “
Wetting Coatings for Dehumidifying Heat Exchangers
,”
HVACR Res.
,
6
(
3
), pp.
229
242
.10.1080/10789669.2000.10391260
258.
Wang
,
C.-C.
, and
Chang
,
C.-T.
,
1998
, “
Heat and Mass Transfer for Plate Fin-and-Tube Heat Exchangers, With and Without Hydrophilic Coating
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3109
3120
.10.1016/S0017-9310(98)00060-X
259.
Tadanaga
,
K.
,
Kitamuro
,
K.
,
Matsuda
,
A.
, and
Minami
,
T.
,
2003
, “
Formation of Superhydrophobic Alumina Coating Films With High Transparency on Polymer Substrates by the Sol-Gel Method
,”
J. Sol-Gel Sci. Technol.
,
26
(
1/3
), pp.
705
708
.10.1023/A:1020785818687
260.
Ari
,
M. A.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
Experimental Characterization of an Additively Manufactured Heat Exchanger for Dry Cooling of Power Plants
,”
Appl. Therm. Eng.
,
129
, pp.
187
198
.10.1016/j.applthermaleng.2017.09.140
261.
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2020
, “
Additively-Manufactured Metallic Porous Lattice Heat Exchangers for Air-Side Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
150
, p.
119262
.10.1016/j.ijheatmasstransfer.2019.119262
262.
Moon
,
H.
,
Boyina
,
K.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2021
, “
Heat Transfer Enhancement of Single-Phase Internal Flows Using Shape Optimization and Additively Manufactured Flow Structures
,”
Int. J. Heat Mass Transfer
,
177
, p.
121510
.10.1016/j.ijheatmasstransfer.2021.121510
263.
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2019
, “
Forced Convection Condensation of R134a in Three-Dimensional Conical Pin Fin Tubes
,”
Int. J. Heat Mass Transfer
,
144
, p.
118599
.10.1016/j.ijheatmasstransfer.2019.118599
264.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Veena
,
V. R.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2017
, “
Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
3
), p.
031901
.10.1115/1.4035068
265.
Ho
,
J. Y.
, and
Leong
,
K. C.
,
2017
, “
Cylindrical Porous Inserts for Enhancing the Thermal and Hydraulic Performance of Water-Cooled Cold Plates
,”
Appl. Therm. Eng.
,
121
, pp.
863
878
.10.1016/j.applthermaleng.2017.04.101
266.
Moon
,
H.
,
McGregor
,
D. J.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2021
, “
Ultra-Power-Dense Heat Exchanger Development Through Genetic Algorithm Design and Additive Manufacturing
,”
Joule
,
5
(
11
), pp.
3045
3056
.10.1016/j.joule.2021.08.004
267.
Wang
,
X. W.
,
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2018
, “
Condensation Heat Transfer and Pressure Drop Characteristics of R-134a in Horizontal Smooth Tubes and Enhanced Tubes Fabricated by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
126
, pp.
949
962
.10.1016/j.ijheatmasstransfer.2018.04.163
268.
Ho
,
J. Y.
,
Liu
,
P.
,
Leong
,
K. C.
,
Wong
,
T. N.
, and
Miljkovic
,
N.
,
2021
, “
A Theoretical Analysis of Filmwise Condensation on Three-Dimensional Pin Fins Fabricated by Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
171
, p.
121092
.10.1016/j.ijheatmasstransfer.2021.121092
269.
Li
,
T.
,
Yan
,
X.
,
Fang
,
X.
,
Jin
,
P.
,
Li
,
J.
,
Rabbi
,
K. F.
, and
Miljkovic
,
N.
,
2021
, “
In Situ Jet Electrolyte Micromachining and Additive Manufacturing
,”
Appl. Phys. Lett.
,
119
(
17
), p.
171602
.10.1063/5.0067988
270.
Wei
,
P.
,
Wei
,
Z.
,
Chen
,
Z.
,
Du
,
J.
,
He
,
Y.
,
Li
,
J.
, and
Zhou
,
Y.
,
2017
, “
The AlSi10 Mg Samples Produced by Selective Laser Melting: Single Track, Densification, Microstructure and Mechanical Behavior
,”
Appl. Surf. Sci.
,
408
, pp.
38
50
.10.1016/j.apsusc.2017.02.215
271.
Liu
,
X.
,
Zhao
,
C.
,
Zhou
,
X.
,
Shen
,
Z.
, and
Liu
,
W.
,
2019
, “
Microstructure of Selective Laser Melted AlSi10 Mg Alloy
,”
Mater. Des.
,
168
, p.
107677
.10.1016/j.matdes.2019.107677
272.
Sun
,
Z.
,
Tan
,
X.
,
Tor
,
S. B.
, and
Yeong
,
W. W.
,
2016
, “
Selective Laser Melting of Stainless Steel 316 L With Low Porosity and High Build Rates
,”
Mater. Des.
,
104
, pp.
197
204
.10.1016/j.matdes.2016.05.035
273.
He
,
Y.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Webler
,
B.
,
2019
, “
Melt Pool Geometry and Microstructure of Ti6Al4V With B Additions Processed by Selective Laser Melting Manufacturing
,”
Mater. Des.
,
183
, p.
108126
.10.1016/j.matdes.2019.108126
274.
Haertel
,
J. H. K.
,
Engelbrecht
,
K.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2018
, “
Topology Optimization of a Pseudo 3D Thermofluid Heat Sink Model
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1073
1088
.10.1016/j.ijheatmasstransfer.2018.01.078
275.
Alexandersen
,
J.
,
Sigmund
,
O.
,
Meyer
,
K. E.
, and
Lazarov
,
B. S.
,
2018
, “
Design of Passive Coolers for Light-Emitting Diode Lamps Using Topology Optimisation
,”
Int. J. Heat Mass Transfer
,
122
, pp.
138
149
.10.1016/j.ijheatmasstransfer.2018.01.103
276.
Ho
,
J. Y.
,
Rabbi
,
K. F.
,
Sett
,
S.
,
Wong
,
T. N.
,
Leong
,
K. C.
, and
Miljkovic
,
N.
,
2021
, “
Nanostructuring of Metallic Additively Manufactured Surfaces for Enhanced Jumping Droplet Condensation
,”
ASME
Paper No. IMECE2021-70949.10.1115/IMECE2021-70949
You do not currently have access to this content.