Abstract

This study is the examination of magnetohydrodinamics (MHD) flow and heat transfer between microparallel plates with constant wall heat flux using two different boundary condition coefficients, widely known in the literature, in a second-order slip flow and temperature jump boundary condition model. The stream of incompressible viscous liquid between rigid microtwin plates with electrical conductivity was assumed to be steady, laminar, hydrodynamically and thermally fully improved. The effects of dilution, viscous dissipation, and axial transmission, which are significant at the microscale, are also contained in the analysis. Momentum and energy equations are solved analytically under second-order slip velocity and temperature jump boundary conditions. Closed type answers for the temperature field and the fully developed Nusselt number are derived as a function of the magnetic parameter (MHD), Knudsen number and modified Brinkman number. Particular attention has been paid to the effects of the magnetic field on the second-order slip flow conditions. The use of the second-order boundary condition coefficients proposed in the study varies according to the proposed boundary conditions and tends to increase and decrease the heat transfer. Otherwise, MHD increases the heat transfer for both boundary conditions.

References

1.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Gad-el-Hak
,
M.
,
2002
, “
Micro Flows: Fundamentals and Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
4
), p.
B76
.10.1115/1.1483361
2.
Deissler
,
R.
,
1964
, “
An Analysis of Second-Order Slip Flow and Temperature-Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
7
(
6
), pp.
681
694
.10.1016/0017-9310(64)90161-9
3.
Hartmann
,
J.
, and
Lazarus
,
F.
,
1937
, “
Experimental Investigations on the Flow of Mercury in a Homogeneous Magnetic Field
,”
Munksgaard
, 15(6), pp.
1
45
.
4.
Kushwaha
,
H. M.
, and
Sahu
,
S.
,
2014
, “
Analysis of Gaseous Flow Between Parallel Plates by Second‐Order Velocity Slip and Temperature Jump Boundary Conditions
,”
Heat Transfer—Asian Res.
,
43
(
8
), pp.
734
748
.10.1002/htj.21116
5.
Xiao
,
N.
,
Elsnab
,
J.
, and
Ameel
,
T.
,
2009
, “
Microtube Gas Flows With Second-Order Slip Flow and Temperature Jump Boundary Conditions
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
243
251
.10.1016/j.ijthermalsci.2008.08.007
6.
Wu
,
L.
,
2008
, “
A Slip Model for Rarefied Gas Flows at Arbitrary Knudsen Number
,”
Appl. Phys. Lett.
,
93
(
25
), p.
253103
.10.1063/1.3052923
7.
Singh
,
G.
, and
Chamkha
,
A.
,
2013
, “
Dual Solutions for Second-Order Slip Flow and Heat Transfer on a Vertical Permeable Shrinking Sheet
,”
Ain Shams Eng. J.
,
4
(
4
), pp.
911
917
.10.1016/j.asej.2013.02.006
8.
Yazdi
,
M. H.
,
Abdullah
,
S.
,
Hashim
,
I.
, and
Sopian
,
K.
,
2011
, “
Effects of Viscous Dissipation on the Slip MHD Flow and Heat Transfer Past a Permeable Surface With Convective Boundary Conditions
,”
Energies
,
4
(
12
), pp.
2273
2294
.10.3390/en4122273
9.
Colin
,
S.
,
Lalonde
,
P.
, and
Caen
,
R.
,
2004
, “
Validation of a Second-Order Slip Flow Model in Rectangular Microchannels
,”
Heat Transfer Eng.
,
25
(
3
), pp.
23
30
.10.1080/01457630490280047
10.
Van Rij
,
J.
,
Ameel
,
T.
, and
Harman
,
T.
,
2009
, “
An Evaluation of Secondary Effects on Microchannel Frictional and Convective Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2792
2801
.10.1016/j.ijheatmasstransfer.2009.01.001
11.
Rahimi
,
B.
, and
Niazmand
,
H.
,
2014
, “
Effects of High-Order Slip/Jump, Thermal Creep, and Variable Thermophysical Properties on Natural Convection in Microchannels With Constant Wall Heat Fluxes
,”
Heat Transfer Eng.
,
35
(
18
), pp.
1528
1538
.10.1080/01457632.2014.897567
12.
Roşca
,
A. V.
, and
Pop
,
I.
,
2013
, “
Flow and Heat Transfer Over a Vertical Permeable Stretching/Shrinking Sheet With a Second Order Slip
,”
Int. J. Heat Mass Transfer
,
60
, pp.
355
364
.10.1016/j.ijheatmasstransfer.2012.12.028
13.
Maurer
,
J.
,
Tabeling
,
P.
,
Joseph
,
P.
, and
Willaime
,
H.
,
2003
, “
Second-Order Slip Laws in Microchannels for Helium and Nitrogen
,”
Phys. Fluids
,
15
(
9
), pp.
2613
2621
.10.1063/1.1599355
14.
Soundalgekar
,
V.
,
1967
, “
Steady MHD Couette Flow of an Electrically Conducting, Viscous, Incompressible Rarefied Gas Under Transverse Magnetic Field
,”
Proc. Proc. Natl. Inst. Sci. India, Part A
, 33(3), pp.
211
220
.https://www.researchgate.net/publication/255387233_Steady_MHD_Couette_Flow_of_an_Electrically_Conducting_Viscous_Incompressible_Rarefied_Gas_under_Transverse_Magnetic_Field
15.
Makinde
,
O. D.
, and
Chinyoka
,
T.
,
2010
, “
MHD Transient Flows and Heat Transfer of Dusty Fluid in a Channel With Variable Physical Properties and Navier Slip Condition
,”
Comput. Math. Appl.
,
60
(
3
), pp.
660
669
.10.1016/j.camwa.2010.05.014
16.
Kabbani
,
H. S.
,
Mack
,
M. J.
,
Joo
,
S. W.
, and
Qian
,
S.
,
2008
, “
Analytical Prediction of Flow Field in Magnetohydrodynamic-Based Microfluidic Devices
,”
ASME J. Fluids Eng.
,
130
(
9
), p. 091204.
17.
Turkyilmazoglu
,
M.
,
2013
, “
Heat and Mass Transfer of MHD Second Order Slip Flow
,”
Comput. Fluids
,
71
, pp.
426
434
.10.1016/j.compfluid.2012.11.011
18.
Muhammad
,
R.
,
Khan
,
M. I.
,
Khan
,
N. B.
, and
Jameel
,
M.
,
2020
, “
Magnetohydrodynamics (MHD) Radiated Nanomaterial Viscous Material Flow by a Curved Surface With Second Order Slip and Entropy Generation
,”
Comput. Methods Programs Biomed.
,
189
, p.
105294
.10.1016/j.cmpb.2019.105294
19.
Bergles
,
A.
,
1988
, “
Some Perspectives on Enhanced Heat Transfer—Second-Generation Heat Transfer Technology
,”
ASME. J. Heat Transfer-Trans. ASME
, 110(4b), pp.
8
19
.10.1115/1.2953302
20.
Ibrahim
,
W.
,
2017
, “
MHD Boundary Layer Flow and Heat Transfer of Micropolar Fluid Past a Stretching Sheet With Second Order Slip
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
3
), pp.
791
799
.10.1007/s40430-016-0621-8
21.
Abbas
,
S. Z.
,
Khan
,
M. I.
,
Kadry
,
S.
,
Khan
,
W. A.
,
Israr-Ur-Rehman
,
M.
, and
Waqas
,
M.
,
2020
, “
Fully Developed Entropy Optimized Second Order Velocity Slip MHD Nanofluid Flow With Activation Energy
,”
Comput. Methods Programs Biomed.
,
190
, p.
105362
.10.1016/j.cmpb.2020.105362
22.
Nazeer
,
M.
,
Ali
,
N.
,
Javed
,
T.
, and
Asghar
,
Z.
,
2018
, “
Natural Convection Through Spherical Particles of a Micropolar Fluid Enclosed in a Trapezoidal Porous Container
,”
Eur. Phys. J. Plus
,
133
(
10
), p.
423
.10.1140/epjp/i2018-12217-5
23.
Nazeer
,
M.
,
Ali
,
N.
, and
Javed
,
T.
,
2018
, “
Numerical Simulation of MHD Flow of Micropolar Fluid Inside a Porous Inclined Cavity With Uniform and Non-Uniform Heated Bottom Wall
,”
Can. J. Phys.
,
96
(
6
), pp.
576
593
.10.1139/cjp-2017-0639
24.
Aman
,
S.
,
Al-Mdallal
,
Q.
, and
Khan
,
I.
,
2020
, “
Heat Transfer and Second Order Slip Effect on MHD Flow of Fractional Maxwell Fluid in a Porous Medium
,”
J. King Saud Univ.-Sci.
,
32
(
1
), pp.
450
458
.10.1016/j.jksus.2018.07.007
25.
Liu
,
Y.
, and
Guo
,
B.
,
2017
, “
Effects of Second-Order Slip on the Flow of a Fractional Maxwell MHD Fluid
,”
J. Assoc. Arab Univ. Basic Appl. Sci.
,
24
(
1
), pp.
232
241
.
26.
Majeed
,
A.
,
Zeeshan
,
A.
,
Mahmood
,
T.
,
Rahman
,
S. U.
, and
Khan
,
I.
,
2019
, “
Impact of Magnetic Field and Second-Order Slip Flow of Casson Liquid With Heat Transfer Subject to Suction/Injection and Convective Boundary Condition
,”
J. Magn.
,
24
(
1
), pp.
81
89
.10.4283/JMAG.2019.24.1.081
27.
Kamran
,
M.
, and
Wiwatanapataphee
,
B.
,
2018
, “
Chemical Reaction and Newtonian Heating Effects on Steady Convection Flow of a Micropolar Fluid With Second Order Slip at the Boundary
,”
Eur. J. Mech.-B/Fluids
,
71
, pp.
138
150
.10.1016/j.euromechflu.2018.04.005
28.
Qayyum
,
S.
,
Khan
,
M. I.
,
Chammam
,
W.
,
Khan
,
W.
,
Ali
,
Z.
, and
Ul-Haq
,
W.
,
2020
, “
Modeling and Theoretical Investigation of Curved Parabolized Surface of Second-Order Velocity Slip Flow: Combined Analysis of Entropy Generation and Activation Energy
,”
Mod. Phys. Lett. B
,
34
(
33
), p.
2050383
.10.1142/S0217984920503832
29.
Zhang
,
Y.
,
Zhao
,
H.-J.
, and
Bai
,
Y.
,
2017
, “
MHD Flow and Heat Transfer of a Generalized Burgers' Fluid Due to an Exponential Accelerating Plate With Effects of the Second Order Slip and Viscous Dissipation
,”
Commun. Theor. Phys.
,
67
(
6
), p.
697
.10.1088/0253-6102/67/6/697
30.
Almutairi
,
F.
,
Khaled
,
S.
, and
Ebaid
,
A.
,
2019
, “
MHD Flow of Nanofluid With Homogeneous-Heterogeneous Reactions in a Porous Medium Under the Influence of Second-Order Velocity Slip
,”
Mathematics
,
7
(
3
), p.
220
.10.3390/math7030220
31.
Lund
,
L. A.
,
Omar
,
Z.
,
Khan
,
I.
,
Kadry
,
S.
,
Rho
,
S.
,
Mari
,
I. A.
, and
Nisar
,
K. S.
,
2019
, “
Effect of Viscous Dissipation in Heat Transfer of MHD Flow of Micropolar Fluid Partial Slip Conditions: Dual Solutions and Stability Analysis
,”
Energies
,
12
(
24
), p.
4617
.10.3390/en12244617
32.
Gireesha
,
B.
, and
Roja
,
A.
,
2020
, “
Second Law Analysis of MHD Natural Convection Slip Flow of Casson Fluid Through an Inclined Microchannel
,”
Multidiscip. Model. Mater. Struct.
,
16
(
6
), pp.
1435
1455
.10.1108/MMMS-11-2019-0189
33.
Sayyed
,
S.
,
Singh
,
B.
, and
Bano
,
N.
,
2019
, “
MHD Stagnation-Point Dissipative Flow in a Porous Medium With Joule Heating and Second-Order Slip
,”
Computing, Communication and Signal Processing
, Springer, Singapore, pp.
601
609
. 10.1007/978-981-13-1513-8
34.
Simsek
,
H.
, and
Ozturk
,
A.
, “
Investigation of the Effect of MHD Slip Flow on Heat Transfer Between Parallel Plates With Second Order Slip Boundary Conditions
,”
Heat Transfer Research
, 52(11), pp.
13
30
.10.1615/HeatTransRes.2021036940
35.
Katagi
,
N. N.
, and
Bhat
,
A.
,
2020
, “
Finite Difference Solution for MHD Flow Between Two Parallel Permeable Plates With Velocity Slip
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
76
(
3
), pp.
38
48
.10.37934/arfmts.76.3.3848
36.
Venkateswarlu
,
M.
,
Babu
,
R.
, and
Shaw
,
S. M.
,
2017
, “
Dufour and Heat Source Effects on Radiative MHD Slip Flow of a Viscous Fluid in a Parallel Porous Plate Channel in Presence of Chemical Reaction
,”
J. Korean Soc. Ind. Appl. Math.
,
21
(
4
), pp.
245
275
.10.12941/JKSIAM.2017.21.245
37.
Kulkarni
,
S.
,
2015
, “
Unsteady MHD Flow of Elastico-Viscous Incompressible Fluid Through a Porous Medium Between Two Parallel Plates Under the Influence of a Magnetic Field
,”
Def. Sci. J.
,
65
(
2
), pp.
119
125
.10.14429/dsj.65.7958
38.
Turkyilmazoglu
,
M.
,
2011
, “
Multiple Solutions of Heat and Mass Transfer of MHD Slip Flow for the Viscoelastic Fluid Over a Stretching Sheet
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2264
2276
.10.1016/j.ijthermalsci.2011.05.014
39.
Bergles
,
A.
,
1997
, “
Heat Transfer Enhancement—The Encouragement and Accommodation of High Heat Fluxes
,” ASME. J. Heat Transfer-Trans. ASME, 199(1), pp.
8
19
.
40.
Malapati
,
V.
, and
Dasari
,
V. L.
,
2017
, “
Slip Velocity Distribution on MHD Oscillatory Heat and Mass Transfer Flow of a Viscous Fluid in a Parallel Plate Channel
,”
GANIT: J. Bangladesh Math. Soc.
,
36
, pp.
91
112
.10.3329/ganit.v36i0.32776
41.
Nazeer
,
M.
,
Hussain
,
F.
,
Khan
,
M. I.
,
Shahzad
,
Q.
,
Chu
,
Y. M.
, and
Kadry
,
S.
,
2021
, “
MHD Two‐Phase Flow of Jeffrey Fluid Suspended With Hafnium and Crystal Particles: Analytical Treatment
,”
Numer. Methods Partial Differ. Equations
.
42.
Simsek
,
S.
,
Uslu
,
S.
, and
Coştu
,
R.
,
2021
, “
A Novel Approach to Study the Effect of Motor Silk-Added Pyrolysis Tire Oil on Performance and Emission Characteristics of a Diesel Engine
,”
Fuel
,
288
, p.
119668
.10.1016/j.fuel.2020.119668
43.
Mahmood
,
T.
,
Shah
,
S.
, and
Abbas
,
G.
,
2015
, “
Magnetohydrodynamic Viscous Flow Over a Shrinking Sheet in a Second-Order Slip Flow Model
,”
Heat Transfer Res.
,
46
(
8
), pp.
725
734
.10.1615/HeatTransRes.2015007512
44.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2020
,
Microscale Flow and Heat Transfer
,
Springer
, Cham, Switzerland.
45.
Hamdan
,
M. A.
,
Al-Assaf
,
A. H.
, and
Al-Nimr
,
M. A.
,
2016
, “
The Effect of Slip Velocity and Temperature Jump on the Hydrodynamic and Thermal Behaviors of MHD Forced Convection Flows in Horizontal Microchannels
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
40
(
2
), pp.
95
103
.10.1007/s40997-016-0004-x
46.
Hussain
,
Z.
,
Zuev
,
S.
,
Kabobel
,
A.
,
Ali
,
M.
,
Sultan
,
F.
, and
Shahzad
,
M.
,
2020
, “
MHD Instability of Two Fluids Between Parallel Plates
,”
Appl. Nanosci.
,
10
(
12
), pp.
5211
5218
.10.1007/s13204-020-01361-7
47.
Kharouf
,
D. M.
,
Al‐Khasawneh
,
K.
, and
Tarawneh
,
M.
,
2020
, “
Effect of Inclined and Low Magnetic Field in Gaseous Slip Flow in Two‐Dimensional Rectangular Microchannel Using First‐Order Boundary Conditions
,”
Heat Transfer
,
49
(
5
), pp.
2887
2905
.10.1002/htj.21751
48.
Nazeer
,
M.
,
Ali
,
N.
,
Ahmad
,
F.
, and
Latif
,
M.
,
2020
, “
Numerical and Perturbation Solutions of Third-Grade Fluid in a Porous Channel: Boundary and Thermal Slip Effects
,”
Pramana
,
94
(
1
), pp.
1
15
.
49.
Nazir
,
M. W.
,
Javed
,
T.
,
Ali
,
N.
, and
Nazeer
,
M.
,
2021
, “
Effects of Radiative Heat Flux and Heat Generation on Magnetohydodynamics Natural Convection Flow of Nanofluid Inside a Porous Triangular Cavity With Thermal Boundary Conditions
,”
Numer. Methods Partial Differ. Equations
.
You do not currently have access to this content.