Abstract

Motivated by the study of spray combustion, this work addresses the combustion of nonspherical droplets. The combustion of spray is usually understood through the theory of droplet combustion, and improving this latter theory is the narrow aim of this work. This work uses perturbation theory to derive a novel model for the vaporization of nonspherical droplets. Compared to previous efforts in this area, the work uses a physics-based approach by incorporating ideas from the asymptotic analysis of Taylor and Acrivos (1964, “On the Deformation and Drag of a Falling Viscous Drop at Low Reynolds Number,” J. Fluid Mech. 18(3), pp. 466–476). The perturbation strategy expands the droplet shape using spherical harmonics, and the theory characterizes the shape of the droplet via the Weber number. The introduction of this parameter is key as it is a parameter that can be easily measured in experiments, and thus it can be used to connect the theoretical results with application. The perturbation analysis is performed based around the classical solution of spherical droplet combustion in quiescent flow. The theory indicates that the effect of droplet deformation can be accounted for by a correction to the droplet combustion rate that is a simple polynomial function of the droplet Weber number. Results are compared to existing literature, and it confirms the established trend that deformed droplets vaporize faster than spherical droplets. Analysis of the flame shape reveals that the flame remains nearly spherical; however, the mean flame standoff changes with droplet shape. The extension of the theory to high Reynolds number conditions is briefly discussed.

References

1.
Loth
,
E.
,
2008
, “
Quasi-Steady Shape and Drag of Deformable Bubbles and Drops
,”
Int. J. Multiphase Flow
,
34
(
6
), pp.
523
546
.10.1016/j.ijmultiphaseflow.2007.08.010
2.
Liu
,
H.
,
Guo
,
Y.
, and
Lin
,
W.
,
2016
, “
Numerical Simulations of Spray Jet in Supersonic Crossflows Using an Eulerian Approach With an SMD Model
,”
Int. J. Multiphase Flow
,
82
, pp.
49
64
.10.1016/j.ijmultiphaseflow.2016.03.003
3.
Xu
,
Y.
,
Farouk
,
T. I.
,
Hicks
,
M. C.
, and
Avedisian
,
C. T.
,
2020
, “
Initial Diameter Effects on Combustion of Unsupported Equi-Volume n-Heptane/Iso-Octane Mixture Droplets and the Transition to Cool Flame Behavior: Experimental Observations and Detailed Numerical Modeling
,”
Combust. Flame
,
220
, pp.
82
91
.10.1016/j.combustflame.2020.06.012
4.
Cuoci
,
A.
,
Avedisian
,
C. T.
,
Brunson
,
J. D.
,
Guo
,
S.
,
Dalili
,
A.
,
Wang
,
Y.
,
Mehl
,
M.
,
Frassoldati
,
A.
,
Seshadri
,
K.
,
Dec
,
J. E.
, and
Lopez-Pintor
,
D.
,
2021
, “
Simulating Combustion of a Seven-Component Surrogate for a Gasoline/Ethanol Blend Including Soot Formation and Comparison With Experiments
,”
Fuel
,
288
, p.
119451
.10.1016/j.fuel.2020.119451
5.
van der Voort
,
D. D.
,
Dam
,
N. J.
,
Clercx
,
H. J. H.
, and
van de Water
,
W.
,
2018
, “
Characterization of Spray-Induced Turbulence Using Fluorescence PIV
,”
Exp. Fluids
,
59
(
7
), pp.
1
7
.10.1007/s00348-018-2561-9
6.
Williams
,
A. N.
,
Seitzman
,
J. M.
, and
Zinn
,
B. T.
,
2020
, “
Visualization of Autoignition Kernels in Jet-a Fuel Spray Using High-Speed OH PLIF
,”
AIAA Propul. Energy Forum
, pp.
1
17
.
7.
Chiu
,
H. H.
, and
Liu
,
T. M.
,
1977
, “
Group Combustion of Liquid Droplets
,”
Combust. Sci. Technol.
,
17
(
3–4
), pp.
127
142
.10.1080/00102207708946823
8.
Brzustowski
,
T. A.
,
Twardu
,
E. M.
,
Wojcicki
,
S.
, and
Sobiesiak
,
A.
,
1979
, “
Interaction of Two Burning Fuel Droplets of Arbitrary Size
,”
AIAA J.
,
17
(
11
), pp.
1234
1242
.10.2514/3.61304
9.
Chiu
,
H. H.
,
Kim
,
H. Y.
, and
Croke
,
E. J.
,
1982
, “
Internal Group Combustion of Liquid Droplets
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
971
980
.10.1016/S0082-0784(82)80273-7
10.
Law
,
C.
,
Prakash
,
S.
, and
Sirignano
,
W.
,
1977
, “
Theory of Convective, Transient, Multicomponent Droplet Vaporization
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
605
617
.10.1016/S0082-0784(77)80356-1
11.
Jog
,
M. A.
,
Ayyaswamy
,
P. S.
, and
Cohen
,
I. M.
,
1996
, “
Evaporation and Combustion of a Slowly Moving Liquid Fuel Droplet: Higher-Order Theory
,”
J. Fluid Mech.
,
307
, pp.
135
165
.10.1017/S0022112096000079
12.
Gogos
,
G.
,
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
, and
Sundararajan
,
T.
,
1986
, “
Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density
,”
J. Fluid Mech.
,
171
(
1
), pp.
121
144
.10.1017/S0022112086001398
13.
Rangel
,
R. H.
, and
Fernandez-Pello
,
A. C.
,
1984
, “
Mixed Convective Droplet Combustion Withl Internal Circulation
,”
Combust. Sci. Technol.
,
42
(
1–2
), pp.
47
65
.10.1080/00102208408960368
14.
Renksizbulut
,
M.
, and
Yuen
,
M. C.
,
1983
, “
Numerical Study of Droplet Evaporation in a High-Temperature Stream
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
2
), pp.
389
397
.10.1115/1.3245591
15.
Jackson
,
G. S.
,
Avedisian
,
C. T.
, and
Yang
,
J. C.
,
1992
, “
Observations of Soot During Droplet Combustion at Low Gravity: Heptane and Heptane/Monochloroalkane Mixtures
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
2017
2033
.10.1016/0017-9310(92)90203-5
16.
Yao
,
G. F.
,
Abdel-Khalik
,
S. I.
, and
Ghiaasiaan
,
S. M.
,
2003
, “
An Investigation of Simple Evaporation Models Used in Spray Simulations
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
1
), pp.
179
182
.10.1115/1.1517267
17.
Wu
,
G.
,
Sirignano
,
W. A.
, and
Williams
,
F. A.
,
2011
, “
Simulation of Transient Convective Burning of an n-Octane Droplet Using a Four-Step Reduced Mechanism
,”
Combust. Flame
,
158
(
6
), pp.
1171
1180
.10.1016/j.combustflame.2010.11.005
18.
Alam
,
F. E.
,
Liu
,
Y. C.
,
Avedisian
,
C. T.
,
Dryer
,
F. L.
, and
Farouk
,
T. I.
,
2015
, “
n-Butanol Droplet Combustion: Numerical Modeling and Reduced Gravity Experiments
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1693
1700
.10.1016/j.proci.2014.06.043
19.
Liu
,
Y. C.
,
Xu
,
Y.
,
Avedisian
,
C. T.
, and
Hicks
,
M. C.
,
2015
, “
The Effect of Support Fibers on Micro-Convection in Droplet Combustion Experiments
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1709
1716
.10.1016/j.proci.2014.07.022
20.
Sazhin
,
S. S.
,
2017
, “
Modelling of Fuel Droplet Heating and Evaporation: Recent Results and Unsolved Problems
,”
Fuel
,
196
, pp.
69
101
.10.1016/j.fuel.2017.01.048
21.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
22.
Miller
,
R. S.
, and
Bellan
,
J.
,
1999
, “
Direct Numerical Simulation of a Confined Three-Dimensional Gas Mixing Layer With One Evaporating Hydrocarbon-Droplet-Laden Stream
,”
J. Fluid Mech.
,
384
(
3
), pp.
293
338
.10.1017/S0022112098004042
23.
Schlottke
,
J.
, and
Weigand
,
B.
,
2008
, “
Direct Numerical Simulation of Evaporating Droplets
,”
J. Comput. Phys.
,
227
(
10
), pp.
5215
5237
.10.1016/j.jcp.2008.01.042
24.
Hardt
,
S.
, and
Wondra
,
F.
,
2008
, “
Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms
,”
J. Comput. Phys.
,
227
(
11
), pp.
5871
5895
.10.1016/j.jcp.2008.02.020
25.
Ma
,
C.
, and
Bothe
,
D.
,
2013
, “
Numerical Modeling of Thermocapillary Two-Phase Flows With Evaporation Using a Two-Scalar Approach for Heat Transfer
,”
J. Comput. Phys.
,
233
, pp.
552
573
.10.1016/j.jcp.2012.09.011
26.
Rueda Villegas
,
L.
,
Alis
,
R.
,
Lepilliez
,
M.
, and
Tanguy
,
S.
,
2016
, “
A Ghost Fluid/Level Set Method for Boiling Flows and Liquid Evaporation: Application to the Leidenfrost Effect
,”
J. Comput. Phys.
,
316
, pp.
789
813
.10.1016/j.jcp.2016.04.031
27.
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2018
, “
Gradient Augmented Level Set Method for Phase Change Simulations
,”
J. Comput. Phys.
,
353
, pp.
377
406
.10.1016/j.jcp.2017.10.016
28.
Palmore
,
J.
, Jr.
, and
Desjardins
,
O.
,
2019
, “
A Volume of Fluid Framework for Interface-Resolved Simulations of Vaporizing Liquid-Gas Flows
,”
J. Comput. Phys.
,
399
, p.
108954
.10.1016/j.jcp.2019.108954
29.
Saufi
,
A. E.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Cuoci
,
A.
,
2021
, “
Interface-Resolved Simulation of the Evaporation and Combustion of a Fuel Droplet Suspended in Normal Gravity
,”
Fuel
,
287
, p.
119413
.10.1016/j.fuel.2020.119413
30.
Grow
,
D. T.
,
1990
, “
Mass and Heat Transfer to an Ellipsoidal Particle
,”
Combust. Flame
,
80
(
2
), pp.
209
213
.10.1016/0010-2180(90)90128-E
31.
Tonini
,
S.
, and
Cossali
,
G. E.
,
2013
, “
An Exact Solution of the Mass Transport Equations for Spheroidal Evaporating Drops
,”
Int. J. Heat Mass Transfer
,
60
(
1
), pp.
236
240
.10.1016/j.ijheatmasstransfer.2013.01.001
32.
Tonini
,
S.
, and
Cossali
,
G. E.
,
2016
, “
One-Dimensional Analytical Approach to Modelling Evaporation and Heating of Deformed Drops
,”
Int. J. Heat Mass Transfer
,
97
, pp.
301
307
.10.1016/j.ijheatmasstransfer.2016.02.004
33.
Tonini
,
S.
, and
Cossali
,
G. E.
,
2018
, “
Modelling of Heat and Mass Transfer From Spheroidal Drops With Non-Uniform Surface Temperature
,”
Int. J. Heat Mass Transfer
,
121
(
2018
), pp.
747
758
.10.1016/j.ijheatmasstransfer.2018.01.040
34.
Taylor
,
T. D.
, and
Acrivos
,
A.
,
1964
, “
On the Deformation and Drag of a Falling Viscous Drop at Low Reynolds Number
,”
J. Fluid Mech.
,
18
(
03
), p.
466
.10.1017/S0022112064000349
35.
Mashayek
,
F.
,
2001
, “
Dynamics of Evaporating Drops. Part I: Formulation and Evaporation Model
,”
Int. J. Heat Mass Transfer
,
44
(
8
), pp.
1517
1526
.10.1016/S0017-9310(00)00199-X
36.
Law
,
C. K.
,
1982
, “
Recent Advances in Droplet Vaporization and Combustion
,”
Prog. Energy Combust. Sci.
,
8
(
3
), pp.
171
201
.10.1016/0360-1285(82)90011-9
37.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, New York.
38.
Haywood
,
R. J.
,
Renksizbulut
,
M.
, and
Raithby
,
G. D.
,
1994
, “
Numerical Solution of Deforming Evaporating Droplets at Intermediate Reynolds Numbers
,”
Numer. Heat Transfer; Part A: Appl.
,
26
(
3
), pp.
253
272
.10.1080/10407789408955991
39.
Helenbrook
,
B. T.
, and
Edwards
,
C. F.
,
2002
, “
Quasi-Steady Deformation and Drag of Uncontaminated Liquid Drops
,”
Int. J. Multiphase Flow
,
28
(
10
), pp.
1631
1657
.10.1016/S0301-9322(02)00073-3
40.
Korn
,
G. A.
, and
Korn
,
T. M.
,
2000
,
Mathematical Handbook for Scientists and Engineers
,
Dover
, Mineola, NY.
41.
Sirignano
,
W.
,
2010
,
Fluid Dynamics and Transport of Droplets and Spray
, 2nd ed.,
Cambridge University Press
, New York.
42.
Joseph
,
D. D.
,
1973
, “
Domain Perturbations: The Higher Order Theory of Infinitesimal Water Waves
,”
Arch. Rational Mech. Anal.
,
51
(
4
), pp.
295
303
.10.1007/BF00250536
43.
NIST Digital Library of Mathematical Functions, “
NIST's
Digital Library of Mathematical Functions,” Release 1.1.4 of 2021-01-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds., accessed Feb. 17, 2022, http://dlmf.nist.gov/
44.
Lian
,
Z. W.
, and
Reitz
,
R. D.
,
1993
, “
The Effect of Vaporization and Gas Compressibility on Liquid Jet Atomization
,”
Atom. Sprays
,
3
(
3
), pp.
249
264
.10.1615/AtomizSpr.v3.i3.10
45.
Lee
,
H.
, and
Choi
,
S.
,
2018
, “
Volatile Flame Visualization of Single Pulverized Fuel Particles
,”
Powder Technol.
,
333
, pp.
353
363
.10.1016/j.powtec.2018.04.048
46.
Gokalp
,
I.
,
Chauveau
,
C.
,
Richard
,
J. R.
,
Kramer
,
M.
, and
Leuckel
,
W.
,
1989
, “
Observations on the Low Temperature Vaporization and Envelope or Wake Flame Burning of n-Heptane Droplets at Reduced Gravity During Parabolic Flights
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
2027
2035
.10.1016/S0082-0784(89)80218-8
47.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes in C++
, 3rd ed.,
Cambridge University Press
,
New York
.
48.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Millman
,
K. J.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
İ.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
,
van Mulbregt
,
P.
,
Vijaykumar
,
A.
,
Bardelli
,
A. P.
,
Rothberg
,
A.
,
Hilboll
,
A.
,
Kloeckner
,
A.
,
Scopatz
,
A.
,
Lee
,
A.
,
Rokem
,
A.
,
Woods
,
C. N.
,
Fulton
,
C.
,
Masson
,
C.
,
Häggström
,
C.
,
Fitzgerald
,
C.
,
Nicholson
,
D. A.
,
Hagen
,
D. R.
,
Pasechnik
,
D. V.
,
Olivetti
,
E.
,
Martin
,
E.
,
Wieser
,
E.
,
Silva
,
F.
,
Lenders
,
F.
,
Wilhelm
,
F.
,
Young
,
G.
,
Price
,
G. A.
,
Ingold
,
G.-L.
,
Allen
,
G. E.
,
Lee
,
G. R.
,
Audren
,
H.
,
Probst
,
I.
,
Dietrich
,
J. P.
,
Silterra
,
J.
,
Webber
,
J. T.
,
Slavič
,
J.
,
Nothman
,
J.
,
Buchner
,
J.
,
Kulick
,
J.
,
Schönberger
,
J. L.
,
de Miranda Cardoso
,
J. V.
,
Reimer
,
J.
,
Harrington
,
J.
,
Rodríguez
,
J. L. C.
,
Nunez-Iglesias
,
J.
,
Kuczynski
,
J.
,
Tritz
,
K.
,
Thoma
,
M.
,
Newville
,
M.
,
Kümmerer
,
M.
,
Bolingbroke
,
M.
,
Tartre
,
M.
,
Pak
,
M.
,
Smith
,
N. J.
,
Nowaczyk
,
N.
,
Shebanov
,
N.
,
Pavlyk
,
O.
,
Brodtkorb
,
P. A.
,
Lee
,
P.
,
McGibbon
,
R. T.
,
Feldbauer
,
R.
,
Lewis
,
S.
,
Tygier
,
S.
,
Sievert
,
S.
,
Vigna
,
S.
,
Peterson
,
S.
,
More
,
S.
,
Pudlik
,
T.
,
Oshima
,
T.
,
Pingel
,
T. J.
,
Robitaille
,
T. P.
,
Spura
,
T.
,
Jones
,
T. R.
,
Cera
,
T.
,
Leslie
,
T.
,
Zito
,
T.
,
Krauss
,
T.
,
Upadhyay
,
U.
,
Halchenko
,
Y. O.
, and
Vázquez-Baeza
,
Y.
, and
SciPy 1.0 Contributors
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
49.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
,
Taylor
,
J.
,
Berg
,
S.
,
Smith
,
N. J.
,
Kern
,
R.
,
Picus
,
M.
,
Hoyer
,
S.
,
van Kerkwijk
,
M. H.
,
Brett
,
M.
,
Haldane
,
A.
,
Fernández del Río
,
J.
,
Wiebe
,
M.
,
Peterson
,
P.
,
Gérard-Marchant
,
P.
,
Sheppard
,
K.
,
Reddy
,
T.
,
Weckesser
,
W.
,
Abbasi
,
H.
,
Gohlke
,
C.
, and
Oliphant
,
T. E.
,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
50.
Setiya
,
M.
, and
Palmore
,
J.
, Jr
2020
, “
Effect of Straining Flow and Droplet Shape on Vaporization Rate of Liquid Fuel Droplet
,”
73rd Annual Meeting of the APS Division of Fluid Dynamics
,
American Physical Society
.
You do not currently have access to this content.