Abstract

The local thermal nonequilibrium (LTNE) model has been used widely for analyzing heat transfer during internal flow through porous media, including when a channel is only partially filled with a porous medium. In such problems, the Biot number describes the rate of convective heat transfer between solid and fluid phases. While uniform Biot number models are commonly available, recent advances in functionally graded materials necessitate the analysis of spatially varying Biot number in such geometries. This paper presents LTNE-based heat transfer analysis for fully developed flow in a channel partially filled with porous medium and with spatially varying Biot number to describe solid-fluid interactions in the porous medium. Fully uncoupled ordinary differential equations for solid and fluid temperature distributions are derived under three different boundary condition models. Solid and fluid temperature fields are presented for a variety of Biot number distributions, including quadratically and periodically varying functions. An explanation of the nature of temperature distribution predictions for such problems is provided. For special cases, the results presented here are shown to reduce to past work on constant Biot number. This work improves the theoretical understanding of porous media heat transfer and facilitates the use of such theoretical models for functionally graded materials.

References

1.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2006
, “
Sintered Porous Medium Heat Sink for Cooling of High-Power Mini-Devices
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
259
266
.10.1016/j.ijheatfluidflow.2005.08.005
2.
Panse
,
S. S.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Air-Based Cooling in High Porosity, Aluminum Foams for Compact Electronics Cooling
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
376
383
.10.1109/ITHERM.2019.8757458
3.
Aliyu
,
M. D.
, and
Chen
,
H. P.
,
2018
, “
Enhanced Geothermal System Modelling With Multiple Pore Media: Thermo-Hydraulic Coupled Processes
,”
Energy
,
165
, pp.
931
948
.10.1016/j.energy.2018.09.129
4.
Torabi
,
M.
,
Karimi
,
N.
,
Torabi
,
M.
,
Peterson
,
G. P.
, and
Simonson
,
C. J.
,
2020
, “
Generation of Entropy in Micro Thermofluidic and Thermochemical Energy Systems-A Critical Review
,”
Int. J. Heat Mass Transfer
,
163
, p.
120471
.10.1016/j.ijheatmasstransfer.2020.120471
5.
Tiab
,
D.
, and
Donaldson
,
E. C.
,
2016
, “
Porosity and Permeability
,”
Petrophysics
,
4
, pp.
67
186
.
6.
Hristov, J.
,
2019
, “
Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches
,”
Front. Phys.
,
7
, p.
189
.10.3389/fphy.2019.00189
7.
Pal
,
S.
,
Hajj
,
M.
,
Wong
,
W.
, and
Puri
,
I.
,
2014
, “
Thermal Energy Storage in Porous Materials With Adsorption and Desorption of Moisture
,”
Int. J. Heat Mass Transfer
,
69
, pp.
285
292
.10.1016/j.ijheatmasstransfer.2013.10.023
8.
Gonçalvès
,
J.
,
Adler
,
P. M.
,
Cosenza
,
P.
,
Pazdniakou
,
A.
, and
de Marsily
,
G.
,
2015
, “
Semipermeable Membrane Properties and Chemomechanical Coupling in Clay Barriers
,”
Dev. Clay Sci.
,
6
, pp.
269
327
.10.1016/B978-0-08-100027-4.00008-5
9.
Hunt
,
M.
, and
Tien
,
C.-L.
,
1988
, “
Non-Darcian Convection in Cylindrical Packed Beds
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
2
), pp.
378
384
.10.1115/1.3250495
10.
Parhizi
,
M.
,
Torabi
,
M.
, and
Jain
,
A.
,
2021
, “
Local Thermal Non-Equilibrium (LTNE) Model for Developed Flow in Porous Media With Spatially-Varying Biot Number
,”
Int. J. Heat Mass Transfer
,
164
, p.
120538
.10.1016/j.ijheatmasstransfer.2020.120538
11.
Yang
,
K.
, and
Vafai
,
K.
,
2010
, “
Analysis of Temperature Gradient Bifurcation in Porous Media – An Exact Solution
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4316
4325
.10.1016/j.ijheatmasstransfer.2010.05.060
12.
Yang
,
K.
, and
Vafai
,
K.
,
2011
, “
Restrictions on the Validity of the Thermal Conditions at the Porous-Fluid Interface—An Exact Solution
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
11
), p.
112601
.10.1115/1.4004350
13.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium non-Darcian, Variable Porosity Incompressible Flow Through Porous Medium
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.10.1016/0017-9310(94)90219-4
14.
Alazmi
,
B.
, and
Vafai
,
K.
,
2002
, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3071
3087
.10.1016/S0017-9310(02)00044-3
15.
Alomar
,
O. R.
,
2019
, “
Analysis of Variable Porosity, Thermal Dispersion, and Local Thermal Non-Equilibrium on Two-Phase Flow Inside Porous Media
,”
Appl. Therm. Eng.
,
154
, pp.
263
283
.10.1016/j.applthermaleng.2019.03.069
16.
Ahmed
,
H. E.
,
Fadhil
,
O. T.
, and
Salih
,
W. A.
,
2019
, “
Heat Transfer and Fluid Flow Characteristics of Tubular Channel Partially Filled With Grooved Metal Foams
,”
Int. Comm. Heat Mass Transfer
,
108
, p.
104336
.10.1016/j.icheatmasstransfer.2019.104336
17.
Xu
,
H. J.
,
2020
, “
Thermal Transport in Microchannels Partially Filled With Micro-Porous Media Involving Flow Inertia, Flow/Thermal Slips, Thermal Non-Equilibrium and Thermal Asymmetry
,”
Int. Comm. Heat Mass Transfer
,
110
, p.
104404
.10.1016/j.icheatmasstransfer.2019.104404
18.
Dehghan
,
M.
,
Valipour
,
M. S.
, and
Saedodin
,
S.
,
2016
, “
Conjugate Heat Transfer Inside Microchannels Filled With Porous Media: An Exact Solution
,”
J. Thermophys. Heat Transfer
,
30
(
4
), pp.
814
824
.10.2514/1.T4767
19.
Li
,
Y.
,
Gong
,
L.
,
Ding
,
B.
,
Xu
,
M.
, and
Joshi
,
Y.
,
2021
, “
Thermal Management of Power Electronics With Liquid Cooled Metal Foam Heat Sink
,”
Int. J. Therm. Sci.
,
163
, p.
106796
.10.1016/j.ijthermalsci.2020.106796
20.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
,
2004
, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
4939
4952
.10.1016/j.ijheatmasstransfer.2004.06.014
21.
Al-Aabidy
,
Q.
,
Alhusseny
,
A.
, and
Al-Zurfi
,
N.
,
2021
, “
Numerical Investigation of Turbulent Flow in a Wavy Channel Partially Filled With a Porous Layer
,”
Int. J. Heat Mass Transfer
,
174
, p.
121327
.10.1016/j.ijheatmasstransfer.2021.121327
22.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
,
1997
, “
Heat Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2691
2707
.10.1016/S0017-9310(96)00250-5
23.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
,
1995
, “
Effect of Boundary Conditions on non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer J. A
,
27
(
6
), pp.
651
664
.10.1080/10407789508913724
24.
Matuła
,
I.
,
Dercz
,
G.
, and
Barczyk
,
J.
,
2020
, “
Titanium/Zirconium Functionally Graded Materials With Porosity Gradients for Potential Biomedical Applications
,”
Mater. Sci. Technol.
,
36
(
9
), pp.
972
977
.10.1080/02670836.2019.1593603
25.
Ma
,
P.
,
Wang
,
B.
,
Chen
,
S.
,
Zhang
,
X.
,
Tao
,
C.
, and
Xing
,
X.
,
2018
, “
Numerical Investigation of Heat Transfer Enhancement Inside the Pipes Filled With Radial Pore-Size Gradient Porous Materials
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
054502
.10.1115/1.4040276
26.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
, Springer, Berlin.https://link.springer.com/book/10.1007/978-1-4612-4254-3
27.
Beavers
,
G. S.
, and
Joseph
,
D. D.
,
1967
, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
,
30
(
1
), pp.
197
207
.10.1017/S0022112067001375
28.
Sahraoui
,
M.
, and
Kaviany
,
M.
,
1992
, “
Slip and No-Slip Velocity Boundary Conditions at Interface of Porous, Plain -Media
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
927
943
.10.1016/0017-9310(92)90258-T
You do not currently have access to this content.