Abstract

Bioconvection due to the movement of the micro-organism cells is universal and affects many ecological and biological processes, including infection, reproduction, and marine life ecosystems. The impact of the bioconvection is more significant in nanofluids. In the present problem, we investigate the Marangoni triply stratified bioconvective flow of non-Newtonian (second-grade) nanofluid with the presence of motile micro-organisms over a permeable inclined plate. The problem provides an analysis of the impact of second-order effects, namely, viscous dissipation, radiation, and chemical reaction, allowing a set of similarity transformations to convert the governing PDEs into coupled nonlinear DEs. Thereafter, Runge–Kutta Fehlberg's numerical method is employed to find the solution of the DEs for some chosen values of different flow influencing parameters. The impact of crucial parameters on the velocity, temperature, nanoparticles volume fraction, the motile density of micro-organisms, and the quantities of physical interest, namely, local Nusselt number, local Sherwood number, and local motile micro-organism density number are illustrated through the plots and tables. It is revealed that the second-grade fluid parameter indicates a prominent correlation with the Marangoni convection in the bioconvective transport mechanism. Also, the Marangoni convection is significant in bioconvective flows for large Péclet numbers.

References

1.
Napolitano
,
L. G.
,
1978
,
Microgravity Fluid Dynamics
,
2nd Levitch Conference
,
Washington
.
2.
Al-Mudhaf
,
A.
, and
Chamkha
,
A. J.
,
2005
, “
Similarity Solutions for MHD Thermosolutal Marangoni Convection Over a Flat Surface in the Presence of Heat Generation or Absorption Effects
,”
Heat Mass Transfer
,
42
(
2
), pp.
112
121
.10.1007/s00231-004-0611-8
3.
Animasaun
,
I. L.
,
Shah
,
N. A.
,
Wakif
,
A.
,
Mahantesh
,
B.
,
Sivaraj
,
R.
, and
Koriko
,
O. K.
,
2022
, “
Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction
,”
Meta-Analysis and Scrutinization
,
Chapman and HALL/CRC
,
New York
.
4.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29
,
Argonne National Lab
,
IL
.
5.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
6.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
2002
2018
.10.1016/j.ijheatmasstransfer.2006.09.034
7.
Khan
,
W. A.
, and
Pop
,
I.
,
2010
, “
Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2477
2483
.10.1016/j.ijheatmasstransfer.2010.01.032
8.
Lin
,
Y.
,
Zheng
,
L.
, and
Zhang
,
X.
,
2013
, “
Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
5
), p.
051702
.10.1115/1.4023394
9.
Lin
,
Y.
,
Zheng
,
L.
, and
Zhang
,
X.
,
2014
, “
Radiation Effects on Marangoni Convection Flow and Heat Transfer in Pseudo-Plastic non-Newtonian Nanofluids With Variable Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
77
, pp.
708
716
.10.1016/j.ijheatmasstransfer.2014.06.028
10.
Hayat
,
T.
,
Shaheen
,
U.
,
Shafiq
,
A.
,
Alsaedi
,
A.
, and
Asghar
,
S.
,
2015
, “
Marangoni Mixed Convection Flow With Joule Heating and Nonlinear Radiation
,”
AIP Adv.
,
5
(
7
), p.
077140
.10.1063/1.4927209
11.
Lin
,
Y.
,
Li
,
B.
,
Zheng
,
L.
, and
Chen
,
G.
,
2016
, “
Particle Shape and Radiation Effects on Marangoni Boundary Layer Flow and Heat Transfer of Copper-Water Nanofluid Driven by an Exponential Temperature
,”
Powder Technol.
,
301
, pp.
379
386
.10.1016/j.powtec.2016.06.029
12.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Analytical Investigation for Lorentz Forces Effect on Nanofluid Marangoni Boundary Layer Hydrothermal Behavior Using HAM
,”
Indian J. Phys.
,
91
(
12
), pp.
1581
1587
.10.1007/s12648-017-1054-7
13.
Wager
,
H. W. T.
,
1911
, “On the Effect of Gravity Upon the Movements and Aggregation of Euglena Viridis, Ehrb., and Other Micro-Organisms,”
Phil. Trans. R. Soc. London, Ser. B
,
201
(
274–281
), pp.
333
390
.10.1098/rstb.1911.0007
14.
Platt
,
J. R.
,
1961
, “
Bioconvection Patterns in Cultures of Free-Swimming Organisms
,”
Science
,
133
(
3466
), pp.
1766
1767
.10.1126/science.133.3466.1766
15.
Pedley
,
T. J.
,
Hill
,
N. A.
, and
Kessler
,
J. O.
,
1988
, “
The Growth of Bioconvection Patterns in a Uniform Suspension of Gyrotactic Micro-Organisms
,”
J. Fluid Mech.
,
195
(
-1
), pp.
223
237
.10.1017/S0022112088002393
16.
Kuznetsov
,
A. V.
,
2012
, “
Nanofluid Bioconvection: Interaction of Microorganisms Oxytactic Upswimming, Nanoparticle Distribution, and Heating/Cooling From Below
,”
Theor. Comput. Fluid Dyn.
,
26
(
1–4
), pp.
291
310
.10.1007/s00162-011-0230-1
17.
Motsa
,
S. S.
, and
Animasaun
,
I. L.
,
2016
, “
Paired Quasi-Linearization Analysis of Heat Transfer in Unsteady Mixed Convection Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms Due to Impulsive Motion
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
11
), p.
114503
.10.1115/1.4034039
18.
Pal
,
D.
, and
Mondal
,
S. K.
,
2018
, “
Influence of Chemical Reaction and Nonlinear Thermal Radiation on Bioconvection of Nanofluid Containing Gyrotactic Microorganisms With Magnetic Field
,”
BioNanoScience
,
8
(
4
), pp.
1065
1080
.10.1007/s12668-018-0555-y
19.
Kairi
,
R. R.
,
Shaw
,
S.
,
Roy
,
S.
, and
Raut
,
S.
,
2021
, “
Thermosolutal Marangoni Impact on Bioconvection in Suspension of Gyrotactic Microorganisms Over an Inclined Stretching Sheet
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
3
), p.
031201
.10.1115/1.4048946
20.
Garg
,
V. K.
, and
Rajagopal
,
K. R.
,
1991
, “
Flow of a non-Newtonian Fluid Past a Wedge
,”
Acta Mech.
,
88
(
1–2
), pp.
113
123
.10.1007/BF01170596
21.
Vajravelu
,
K.
, and
Rollins
,
D.
,
2004
, “
Hydromagnetic Flow of a Second Grade Fluid Over a Stretching Sheet
,”
Appl. Math Comput.
,
148
(
3
), pp.
783
791
.10.1016/S0096-3003(02)00942-6
22.
Ibrahim
,
W.
, and
Makinde
,
O. D.
,
2013
, “
The Effect of Double Stratification on Boundary-Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate
,”
Comput. Fluids
,
86
, pp.
433
441
.10.1016/j.compfluid.2013.07.029
23.
Srinivasacharya
,
D.
, and
Surender
,
O.
,
2014
, “
Non-Similar Solution for Natural Convective Boundary Layer Flow of a Nanofluid Past a Vertical Plate Embedded in a Doubly Stratified Porous Medium
,”
Int. J. Heat Mass Transfer
,
71
, pp.
431
438
.10.1016/j.ijheatmasstransfer.2013.12.001
24.
Hayat
,
T.
,
Waqas
,
M.
,
Khan
,
M. I.
, and
Alsaedi
,
A.
,
2016
, “
Analysis of Thixotropic Nanomaterial in a Doubly Stratified Medium Considering Magnetic Field Effects
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1123
1129
.10.1016/j.ijheatmasstransfer.2016.06.090
25.
Abbasi
,
F. M.
,
Shehzad
,
S. A.
,
Hayat
,
T.
, and
Ahmad
,
B.
,
2016
, “
Doubly Stratified Mixed Convection Flow of Maxwell Nanofluid With Heat Generation/Absorption
,”
J. Magn. Magn. Mater.
,
404
, pp.
159
165
.10.1016/j.jmmm.2015.11.090
26.
Farooq
,
M.
,
Anzar
,
Q. A.
,
Hayat
,
T.
,
Khan
,
M. I.
, and
Anjum
,
A.
,
2017
, “
Local Similar Solution of MHD Stagnation Point Flow in Carreau Fluid Over a Non-Linear Stretched Surface With Double Stratified Medium
,”
Results Phys.
,
7
, pp.
3078
3089
.10.1016/j.rinp.2017.08.019
27.
Khan
,
S. A.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Zaigham Zai
,
Q. M.
,
2020
, “
Irreversibility Analysis in Marangoni Forced Convection Flow of Second Grade Fluid
,”
J. Phys. Commun.
,
4
(
8
), p.
085013
.10.1088/2399-6528/aba8db
28.
Hayat
,
T.
,
Khan
,
S. A.
,
Alsaedi
,
A.
, and
Fardoun
,
H. M.
,
2021
, “
Marangoni Forced Convective Flow of Second Grade Fluid With Irreversibility Analysis and Chemical Reaction
,”
Int. J. Thermophys.
,
42
, p.
11
.10.1007/s10765-020-02764-y
29.
Waqas
,
M.
,
Dogonchi
,
A. S.
,
Shehzad
,
S. A.
,
Khan
,
M. I.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2020
, “
Nonlinear Convection and Joule Heating Impacts in Magneto-Thixotropic Nanofluid Stratified Flow by Convectively Heated Variable Thicked Surface
,”
J. Mol. Liq.
,
300
, p.
111945
.10.1016/j.molliq.2019.111945
30.
Animasaun
,
I. L.
,
Ibraheem
,
R. O.
,
Mahanthesh
,
B.
, and
Babatunde
,
H. A.
,
2019
, “
A Meta-Analysis on the Effects of Haphazard Motion of Tiny/Nano-Sized Particles on the Dynamics and Other Physical Properties of Some Fluids
,”
Chin. J. Phys.
,
60
, pp.
676
687
.10.1016/j.cjph.2019.06.007
31.
Wakif
,
A.
,
Animasaun
,
I. L.
,
Satya Narayana
,
P. V.
, and
Sarojamma
,
G.
,
2020
, “
A Meta-Analysis on the Effects of Haphazard Motion of Tiny/Nano-Sized Particles on the Dynamics and Other Physical Properties of Some Fluids
,”
Chin. J. Phys.
,
68
, pp.
293
307
.10.1016/j.cjph.2019.12.002
32.
Sarkar
,
A. K.
,
Georgiou
,
G.
, and
Sharma
,
M. M.
,
1994
, “
Transport of Bacteria in Porous Media: I. An Experimental Investigation
,”
Biotech. Bioeng.
,
44
(
4
), pp.
489
497
.10.1002/bit.260440412
You do not currently have access to this content.