Abstract

Research results demonstrate the heat transfer effectiveness of an impinging synthetic jet toward cooling a plane normal to it. The utility of the synthetic jet lies in that the supply of coolant comes from the device itself as an alternating jetting flow that emerges from a plenum followed by a sink flow that returns to that same plenum. Experiments reported herein were conducted with the synthetic jet driven by an oscillating diaphragm powered by a rotating cam to expel fluid from the plenum out of a single hole, then return it through the same hole. The frequency of diaphragm oscillation and the distance from the synthetic jet's orifice to the surface being cooled are varied in the test program to determine their effects on cooling performance. A numerical study agrees with the results given by the experiment and flow visualization utilizing a smoke generator supports the data and numerical results. The local, time-average Nusselt numbers were measured in the experiment using the thermochromic liquid crystal technique and air as coolant. The color display of each test case was recorded with a fisheye camera. In the case of the highest frequency and shortest distance from orifice to cooled plate, a Nusselt number of nearly 40 was achieved within the central region of the cooled plate when the Reynolds number based upon jet maximum velocity and orifice diameter was 7500 and the distance from the orifice to cooled plate was 3.2 orifice diameters.

References

1.
Garimella
,
S. V.
,
2006
, “
Advances in Mesoscale Thermal Management Technologies for Microelectronics
,”
Microelectron. J.
,
37
(
11
), pp.
1165
1185
.10.1016/j.mejo.2005.07.017
2.
Mahalingam
,
R.
, and
Glezer
,
A.
,
2005
, “
Design and Thermal Characteristics of a Synthetic Jet Ejector Heat Sink
,”
J. Electron. Packaging
,
127
(
2
), pp.
172
177
.10.1115/1.1869509
3.
Lehmann
,
G. L.
, and
Kosteva
,
S. J.
,
1990
, “
A Study of Forced Convection Direct Air Cooling in the Downstream Vicinity of Heat Sinks
,”
J. Electron. Packaging
,
112
(
3
), pp.
234
240
.10.1115/1.2904372
4.
Morris
,
G. K.
, and
Garimella
,
S. V.
,
1998
, “
Orifice and Impingement Flow Fields in Confined Jet Impingement
,”
J. Electron. Packaging
,
120
(
1
), pp.
68
72
.10.1115/1.2792288
5.
Glezer
,
A.
, and
Amitay
,
M.
,
2002
, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
503
529
.10.1146/annurev.fluid.34.090501.094913
6.
Huang
,
L.
,
Yeom
,
T.
,
Simon
,
T.
, and
Cui
,
T.
,
2021
, “
An Experimental and Numerical Study on Heat Transfer Enhancement of a Heat Sink Fin by Synthetic Jet Impingement
,”
Heat Mass Transfer
,
57
(
4
), pp.
583
593
.10.1007/s00231-020-02974-y
7.
Cater
,
J. E.
, and
Soria
,
J.
,
2002
, “
The Evolution of Round Zero-Net-Mass-Flux Jets
,”
J. Fluid Mech.
,
472
, pp.
167
200
.10.1017/S0022112002002264
8.
Smith
,
B. L.
, and
Glezer
,
A.
,
1998
, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
,
10
(
9
), pp.
2281
2297
.10.1063/1.869828
9.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Stanek
,
M. J.
,
1999
, “
Numerical Investigation of Synthetic-Jet Flowfields
,”
AIAA J.
,
37
(
8
), pp.
919
927
.10.2514/2.811
10.
Mallinson
,
S. G.
,
Reizes
,
J. A.
, and
Hong
,
G.
,
2001
, “
An Experimental and Numerical Study of Synthetic Jet Flow
,”
Aeronaut. J.
,
105
(
1043
), pp.
41
49
.10.1017/S0001924000095968
11.
Pavlova
,
A.
, and
Amitay
,
M.
,
2006
, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
9
), pp.
897
907
.10.1115/1.2241889
12.
Jain
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2011
, “
A Numerical Investigation of Effects of Cavity and Orifice Parameters on the Characteristics of a Synthetic Jet Flow
,”
Sens. Actuators A: Phys.
,
165
(
2
), pp.
351
366
.10.1016/j.sna.2010.11.001
13.
Smith
,
B. L.
, and
Swift
,
G. W.
,
2003
, “
A Comparison Between Synthetic Jets and Continuous Jets
,”
Exp. Fluids
,
34
(
4
), pp.
467
472
.10.1007/s00348-002-0577-6
14.
Hatami
,
M.
,
Bazdidi-Tehrani
,
F.
,
Abouata
,
A.
, and
Mohammadi-Ahmar
,
A.
,
2018
, “
Investigation of Geometry and Dimensionless Parameters Effects on the Flow Field and Heat Transfer of Impingement Synthetic Jets
,”
Int. J. Therm. Sci.
,
127
, pp.
41
52
.10.1016/j.ijthermalsci.2018.01.011
15.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
, and
Saddoughi
,
S.
,
2004
, “
Micro Fluidic Jets for Thermal Management of Electronics
,”
ASME
Paper No. HT-FED2004-56782. 10.1115/HT-FED2004-56782
16.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2010
, “
Heat Transfer Characteristics of Synthetic Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1057
1069
.10.1016/j.ijheatmasstransfer.2009.11.005
17.
Krishan
,
G.
,
Aw
,
K. C.
, and
Sharma
,
R. N.
,
2019
, “
Synthetic Jet Impingement Heat Transfer Enhancement – A Review
,”
Appl. Therm. Eng.
,
149
, pp.
1305
1323
.10.1016/j.applthermaleng.2018.12.134
18.
Greco
,
C.
,
Paolillo
,
G.
,
Ianiro
,
A.
,
Cardone
,
G.
, and
De Luca
,
L.
,
2018
, “
Effects of the Stroke Length and Nozzle-to-Plate Distance on Synthetic Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1019
1031
.10.1016/j.ijheatmasstransfer.2017.09.118
19.
Gil
,
P.
, and
Wilk
,
J.
,
2020
, “
Heat Transfer Coefficients During the Impingement Cooling With the Use of Synthetic Jet
,”
Int. J. Therm. Sci.
,
147
, p.
106132
.10.1016/j.ijthermalsci.2019.106132
20.
Kercher
,
D. S.
,
Lee
,
J.-B.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
,
2003
, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag., Technol.
,
26
(
2
), pp.
359
366
.10.1109/TCAPT.2003.815116
21.
Touloukian
,
Y. S.
, and
DeWitt
,
D. P.
,
1972
,
Thermophysical Properties of Matter: Volume 8: Thermal Radiative Properties: Nonmetallic Solids
,
IFI/Plenum
,
New York/Washington
, pp.
1708
1709
.
22.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
You do not currently have access to this content.