Abstract

The effect of real gas volumetric radiation on the thermal development in laminar parallel plate channel flow of H2O and/or CO2 in the case of gas cooling has been investigated numerically. The nongray radiation effects of the gas have been treated using a global spectral approach, the Spectral Line Weighted-sum-of-gray-gases model. The results reveal that gas radiation results in significantly higher total heat transfer to the cooled channel wall, with an attendant more rapid drop in gas mean temperature. Gas radiation is seen to increase the local convective and total (radiative plus convective) Nusselt number for increasing radiating species mole fraction for both H2O and CO2 and for increasing gas inlet temperature. The influence of gas radiation on the thermal development is less pronounced for CO2 than for H2O. An apparent thermally fully developed condition may exist for this combined convection-radiation problem with real gases in the gas cooling scenario, and radiation has the effect of significantly extending the thermally developing region. Combined hydrodynamic and thermal development yields higher heat transfer than the thermally developing condition. Smaller channel wall spacing results in lower radiative heat transfer and the aforementioned radiation effects are diminished. Local convective and radiative flux and thermal entry length also increase with elevated gas total pressure.

References

1.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer: Supplement 1
,
Academic Press
,
New York
.
2.
Viskanta
,
R.
,
1963
, “
Interaction of Heat Transfer by Conduction, Convection, and Radiation in a Radiating Fluid
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
85
(
4
), pp.
318
328
.10.1115/1.3686120
3.
Chen
,
J. C.
,
1964
, “
Simultaneous Radiative and Convective Heat Transfer in an Absorbing, Emitting, and Scattering Medium in Slug Flow Between Parallel Plates
,”
AIChE J.
,
10
(
2
), pp.
253
259
.10.1002/aic.690100223
4.
Kurosaki
,
Y.
,
1970
, “
Heat Transfer by Simultaneous Radiation and Convection in an Absorbing and Emitting Medium in a Flow Between Parallel Plates
,”
Heat Transfer 1970, Proceedings of the Fourth International Heat Transfer Conference
, Paris, Versailles, Aug. 31–Sept. 5, Vol.
3, No. 2.5, Elsevier, New York
.
5.
Echigo
,
R.
,
Hasegawa
,
S.
, and
Kamiuto
,
K.
,
1975
, “
Composite Heat Transfer in a Pipe With Thermal Radiation of Two-Dimensional Propagation in Connection With the Temperature Rise in Flowing Medium Upstream From Heating Section
,”
Int. J. Heat Mass Transfer
,
18
, pp.
1149
1159
.
6.
Chawla
,
T. C.
, and
Chan
,
S. H.
,
1980
, “
Combined Radiation Convection in Thermally Developing Poiseuille Flow With Scattering
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
102
(
2
), pp.
297
302
.10.1115/1.3244277
7.
Pearce
,
B. E.
, and
Emery
,
A. F.
,
1970
, “
Heat Transfer by Thermal Radiation and Laminar Forced Convection to an Absorbing Fluid in the Entry Region of a Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
92
(
2
), pp.
221
230
.10.1115/1.3449653
8.
DeSoto
,
S.
,
1968
, “
Conduction and Convection in Entrance Region Flow
,”
Int. J. Heat Mass Transfer
,
11
(
1
), pp.
39
53
.10.1016/0017-9310(68)90062-8
9.
Greif
,
R.
, and
McEligot
,
D. M.
,
1971
, “
Influence of Optically Thin Radiation on Heat Transfer in the Thermal Entrance Region of a Narrow Duct
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
93
(
4
), pp.
473
475
.10.1115/1.3449853
10.
Greif
,
R.
, and
McEligot
,
D. M.
,
1972
, “
Thermally Developing Laminar Flows With Radiative Interaction Using the Total Band Absorptance Model
,”
Appl Sci. Res.
,
25
(
1
), pp.
234
244
.10.1007/BF00382298
11.
Balakrishnan
,
A.
, and
Edwards
,
D. K.
,
1979
, “
Molecular Gas Radiation in the Thermal Entrance Region of a Duct
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
101
(
3
), pp.
489
495
.10.1115/1.3451015
12.
Wassel
,
A. T.
, and
Edwards
,
D. K.
,
1976
, “
Molecular Gas Radiation in a Laminar or Turbulent Pipe Flow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
98
(
1
), pp.
101
107
.10.1115/1.3450450
13.
Im
,
D. K.
, and
Ahluwalia
,
R. K.
,
1984
, “
Combined Convective and Radiation in Rectangular Ducts
,”
Int. J. Heat Mass Transfer
,
27
(
2
), pp.
221
231
.10.1016/0017-9310(84)90213-8
14.
Im
,
D. K.
, and
Ahluwalia
,
R. K.
,
1983
, “
Radiative Transfer in Spectrally Dissimilar Absorbing-Emitting-Scattering Adjacent Mediums
,”
AIAA J.
,
21
(
1
), pp.
134
141
.10.2514/3.8039
15.
Ahluwalia
,
R. K.
, and
Im
,
D. K.
,
1984
, “
Radiative Heat Transfer in Segregated Media
,”
AIAA J.
,
22
(
2
), pp.
317
319
.10.2514/3.8393
16.
Yang
,
G.
, and
Ebadian
,
M. A.
,
1991
, “
Radiative-Convective Heat Transfer in a Parallel Plate Duct With Non-Gray Medium
,”
Advances in Heat Exchanger Design, Radiation, and Combustion, ASME Winter Annual Meeting, Atlanta, GA, Dec. 1–6, 1991, HTD
, Vol.
182
, pp.
51
58
, ASME, New York.
17.
Yang
,
G.
, and
Ebadian
,
M. A.
,
1992
, “
Combined Radiation and Convection Heat Transfer in Simultaneously Developing Flow in Ducts With Semi-Circular and Right Triangular Cross Sections
,”
Wärme Stöffubertr.
,
27
(
3
), pp.
141
148
.10.1007/BF01599927
18.
Hirano
,
M.
,
Miyauchi
,
T.
, and
Takahira
,
Y.
,
1988
, “
Heat Transfer Analysis of a Nongray Gas in a Flow System, Part: The Case of Small Temperature Differences Between the Gas and a Heat Absorbing Surface
,”
Heat Transfer Jap. Res.
,
17
, pp.
65
79
.
19.
Hirano
,
M.
,
Miyauchi
,
T.
, and
Takahira
,
Y.
,
1988
, “
Enhancement of Radiative Heat Transfer in the Laminar Channel Flow of Non-Gray Gases
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
367
374
.10.1016/0017-9310(88)90019-1
20.
Seo
,
T.
,
Kaminski
,
D. A.
, and
Jensen
,
M. K.
,
1994
, “
Combined Convection and Radiation in Simultaneously Developing Flow and Heat Transfer With Nongray Mixtures
,”
Num. Heat Transfer: Part A
,
26
(
1
), pp.
49
66
.10.1080/10407789408955980
21.
Trabelsi
,
S.
,
Lakhal
,
W.
,
Sediki
,
E.
, and
Moussa
,
M.
,
2013
, “
Nusselt Number Evaluation for Combined Radiative and Convective Heat Transfer in Flow of Gaseous Products From Combustion
,”
Therm. Sci.
,
17
(
4
), pp.
1093
1106
.10.2298/TSCI110531083T
22.
Solovjov
,
V. P.
,
Webb
,
B. W.
, and
André
,
F.
,
2018
, “
Radiative Properties of Gases
,”
Handbook of Thermal Science and Engineering
,
F. A.
Kulacki
, ed.,
2
,
Springer
,
New York
, pp.
1069
1142
.
23.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectr. Rad. Transfer
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
24.
Tashkun
,
S. A.
, and
Perevalov
,
V. I.
,
2011
, “
CDSD-4000: High-Resolution, High-Temperature Carbon Dioxide Spectroscopic Databank
,” J. Quant. Spectr. Rad. Transfer,
112
(
9
), pp.
1403
1410
.
25.
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
André
,
F.
,
2019
,
The Spectral Line Weighted-Sum-of-Gray-Gases (SLW) Model for Prediction of Radiative Transfer in Molecular Gases, Advances in Heat Transfer
,
E. M.
Sparrow
,
J. P.
Abraham
,
J. M.
Gorman
, and
W. J.
Minkowycz
, eds., Vol.
51
,
Academic Press
,
New York
, pp.
207
298
.
26.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
4
), pp.
1004
1012
.10.1115/1.2911354
27.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
An Absorption-Line Blackbody Distribution Function for Efficient Calculation of Gas Radiative Transfer
,”
J. Quant. Spectr. Rad. Transfer
,
50
(
5
), pp.
499
510
.10.1016/0022-4073(93)90043-H
28.
Pearson
,
J.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2014
, “
Efficient Representation of the Absorption Line Blackbody Distribution Function for H2O, CO2, and CO at Variable Temperature, Mole Fraction, and Total Pressure
,”
J. Quant. Spectr. Rad. Transfer
,
138
, pp.
82
96
.10.1016/j.jqsrt.2014.01.019
29.
Solovjov
,
V. P.
,
André
,
F.
,
Lemonnier
,
D.
, and
Webb
,
B. W.
,
2017
, “
The Rank Correlated SLW Model of Gas Radiation in Non-Uniform Media
,”
J. Quant. Spectr. Rad. Transfer
,
197
, pp.
26
44
.10.1016/j.jqsrt.2017.01.034
30.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
The Spectral-Line Weighted-Sum-of-Gray-Gases Model for H2O/CO2 Mixtures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
3
), pp.
788
792
.10.1115/1.2822652
31.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2000
, “
SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures
,”
J. Quant. Spectr. Rad. Transfer
,
65
(
4
), pp.
655
672
.10.1016/S0022-4073(99)00133-8
32.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2001
, “
An Efficient Method for Modeling Radiative Transfer in Multicomponent Gas Mixtures With Soot
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
3
), pp.
450
457
.10.1115/1.1350824
33.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
34.
Raithby
,
G. D.
, and
Chui
,
E. J.
,
1990
, “
A Finite Volume Method for Predicting Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
2
), pp.
415
423
.10.1115/1.2910394
35.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1958
,
The Mathematical Theory of Non-Uniform Gases
,
University Press
,
Cambridge
.
36.
DIPPR
,
2022
, “
DIPPR: Design Institute for Physical Properties
,” accessed Aug. 19, 2022, https://www.aiche.org/dippr
37.
Webb
,
B. W.
, and
Solovjov
,
V. P.
,
2021
, “
The Influence of Real Gas Radiation on the Stability and Development of Bénard Convection in a Two-Dimensional Layer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
10
), p.
102602
.10.1115/1.4051499
38.
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
André
,
F.
,
2018
, “
An Exploration of the Influence of Spectral Model Parameters on the Accuracy of the Rank Correlated SLW Model
,”
J. Quant. Spectr. Rad. Transfer
,
218
, pp.
161
170
.10.1016/j.jqsrt.2018.06.023
You do not currently have access to this content.