Abstract

This paper considers the optimization of thermal systems and processes, which are of interest in a wide range of practical applications, on the basis of mathematical and numerical modeling as well as experimental data. Many complexities, such as property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions, typically arise in these systems, making experimentation and numerical simulation quite challenging. Consequently, many studies have obtained detailed results on the processes without going further into system design. Also, many important systems have not been optimized for best performance or output. This paper focuses on the practical aspects of obtaining an optimum in thermal systems and processes. Of particular interest are validation of the model and linking the simulation with system performance, design, and optimization. Optimization is considered both for the operating conditions as well as for the hardware of the system. Starting with a feasible domain that leads to an acceptable design, different optimization strategies may be employed. Both deterministic conditions and those with uncertainty are of interest and are outlined. Of particular interest is multiobjective optimization, since most thermal systems involve several important objectives, such as heat transfer rate and pressure in electronic cooling systems and product quality and production rate in manufacturing systems. The optimization is often a constrained one due to limitations on materials, cost, and operating conditions that determine the acceptable domain. Nature is replete with interesting examples where constrained multiobjective optimization is employed by various living creatures for food, safety, mobility, and other aspects of survival. A study of such natural phenomena can also be used in technology as we seek an optimum. Such nature-inspired optimization is discussed. Overall, the focus is on realistic and practical approaches that may be adopted to optimize thermal systems and processes to minimize energy consumption, enhance productivity, reduce environmental impact, improve heat transfer and achieve other objectives.

References

1.
Stoecker
,
W. F.
,
1989
,
Design of Thermal Systems
, 3rd ed.,
McGraw-Hill
,
New York
.
2.
Janna
,
W. S.
,
2014
,
Design of Fluid Thermal Systems
, 4th ed.,
Cengage Learning
,
Boston, MA
.
3.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
4.
Arora
,
J. S.
,
2016
,
Introduction to Optimum Design
, 4th ed.,
Academic Press
,
Cambridge, MA
.
5.
Jaluria
,
Y.
,
2018
,
Design and Optimization of Thermal Systems: With Matlab Applications
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
6.
Law
,
A. W.-K.
,
2012
, “
On the Significance of Recirculation Between Intakes and Outfalls of Desalination and Thermal Power Plants
,”
Desalin. Water Treat.
,
42
(
1–3
), pp.
304
308
.10.1080/19443994.2012.683140
7.
Salehi
,
M.
,
2017
, “
Thermal Recirculation Modeling for Power Plants in an Estuarine Environment
,”
J. Mar. Sci. Eng.
,
5
(
1
), p.
5
.10.3390/jmse5010005
8.
Icoz
,
T.
, and
Jaluria
,
Y.
,
2004
, “
Design of Cooling Systems for Electronic Equipment Using Both Experimental and Numerical Inputs
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
465
471
.10.1115/1.1827262
9.
Jaluria
,
Y.
,
2010
, “
Role of Experiments in the Accurate Numerical Simulation of Thermal Processes
,”
Int. J. Num. Method Heat Fluid Flow
,
20
(
5
), pp.
467
491
.10.1108/09615531011048204
10.
Icoz
,
T.
, and
Jaluria
,
Y.
,
2006
, “
Design Optimization of Size and Geometry of Vortex Promoter in a Two-Dimensional Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
10
), pp.
1081
1092
.10.1115/1.2345433
11.
Li
,
T.
(ed.),
1985
,
Optical Fiber Communications, Vol. 1: Fiber Fabrication
,
Academic Press
,
New York
.
12.
Paek
,
U. C.
,
1999
, “
Free Drawing and Polymer Coating of Silica Glass Optical Fibers
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
4
), pp.
774
788
.10.1115/1.2826066
13.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Ann. Rev. Fluid Mech.
,
23
(
1
), pp.
197
232
.10.1146/annurev.fl.23.010191.001213
14.
Mahajan
,
R. L.
,
1996
, “
Transport Phenomena in Chemical Vapor-Deposition Systems
,”
Adv. Heat Transfer
,
28
, pp.
339
425
.10.1016/S0065-2717(08)70143-6
15.
Tadmor
,
Z.
, and
Gogos
,
C.
,
1979
,
Principles of Polymer Processing
,
Wiley
,
New York
.
16.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
.
17.
Jaluria
,
Y.
,
2017
, “
Thermal Transport in the Manufacture of Optical Fibers
,”
Ann. Rev. Heat Transfer
,
20
(
1
), pp.
193
239
.10.1615/AnnualRevHeatTransfer.2017018277
18.
Fitt
,
A. D.
,
Furusawa
,
K.
,
Monro
,
T. M.
, and
Please
,
C. P.
,
2001
, “
Modeling the Fabrication of Hollow Fibers: Capillary Drawing
,”
J. Lightwave Tech.
,
19
(
12
), pp.
1924
1931
.10.1109/50.971686
19.
Harrington
,
J. A.
,
2004
,
Infrared Fibers and Their Applications
,
SPIE Pub
,
Bellingham, WA
.
20.
Yang
,
J.
, and
Jaluria
,
Y.
,
2009
, “
Transport Processes Governing the Drawing of a Hollow Optical Fiber
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), p. 072102.10.1115/1.3090809
21.
Jaluria
,
Y.
,
2018
,
Advanced Materials Processing and Manufacturing
,
Springer
,
Cham, Switzerland
.
22.
Zhu
,
W.
, and
Jaluria
,
Y.
,
2001
, “
Transport Processes and Feasible Operating Domain in a Twin-Screw Polymer Extruder
,”
Polym. Eng. Sci.
,
41
(
1
), pp.
107
117
.10.1002/pen.10713
23.
Yang
,
J.
, and
Jaluria
,
Y.
,
2009
, “
Feasibility and Optimization of the Hollow Optical Fiber Drawing Process
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
4108
4116
.10.1016/j.ijheatmasstransfer.2009.03.033
24.
Lin
,
P.-T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2009
, “
Parametric Modeling and Optimization of Chemical Vapor Deposition Process
,”
J. Manuf. Sci. Eng.
,
131
, p. 011011.10.1115/1.3063689
25.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
2016
,
Response Surface Methodology, Process and Product Optimization Using Designed Experiments
, 4th ed.,
Wiley
,
New York
.
26.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2017
,
Principles of Optimal Design
, 3rd ed.,
Cambridge University Press
,
New York
.
27.
Rao
,
S. S.
,
2019
,
Engineering Optimization: Theory and Practice
, 5th ed.,
Wiley
,
New York
.
28.
Mitchell
,
M.
,
1998
,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
.
29.
Sheppard
,
C.
,
2018
,
Genetic Algorithms With Python
,
CreateSpace Independent Publishing
,
Austin, TX
.
30.
Miettinen
,
K. M.
,
1999
,
Nonlinear Multi-Objective Optimization
,
Kluwer Academic Press
,
Boston, MA
.
31.
Deb
,
K.
,
2009
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
32.
Zhao
,
H.
,
Icoz
,
T.
,
Jaluria
,
Y.
, and
Knight
,
D.
,
2007
, “
Application of Data Driven Design Optimization Methodology to a Multi-Objective Design Optimization Problem
,”
J. Eng. Des.
,
18
(
4
), pp.
343
359
.10.1080/09544820601010981
33.
Zhang
,
X.
, and
Jaluria
,
Y.
,
2018
, “
Optimization of Microchannel-Based Cooling Systems
,”
Numer. Heat Transfer
,
74
(
3
), pp.
1053
1067
.10.1080/10407782.2018.1513285
34.
Tu
,
J.
,
Cho
,
J.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability Based Design Optimization
,”
J. Mech. Des.
,
121
(
4
), pp.
557
564
.10.1115/1.2829499
35.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
J. Mech. Des.
,
126
(
3
), pp.
403
411
.10.1115/1.1701880
36.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2010
, “
Systematic Strategy for Modeling and Optimization of Thermal Systems With Design Uncertainties
,”
Front. Heat Mass Transfer
,
1
, pp.
013003
1
20
.
37.
Zhang
,
X.
, and
Jaluria
,
Y.
,
2020
, “
Reliability-Based Optimization and Design Limits of Thermal Systems: Microchannel Cooling Systems
,”
Int. J. Heat Mass Transfer
,
149
, pp.
119202
9
.10.1016/j.ijheatmasstransfer.2019.119202
38.
Karwe
,
M. V.
, and
Jaluria
,
Y.
,
1986
, “
Thermal Transport From a Heated Moving Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
4
), pp.
728
733
.10.1115/1.3247005
39.
Chiruvella
,
R. V.
,
Jaluria
,
Y.
,
Esseghir
,
M.
, and
Sernas
,
V.
,
1996
, “
Extrusion of Non-Newtonian Fluids in a Single-Screw Extruder With Pressure Back Flow
,”
Polym. Eng. Sci.
,
36
(
3
), pp.
358
367
.10.1002/pen.10422
40.
Bejan
,
A.
, and
Zane
,
J. P.
,
2013
,
Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology and Social Organizations
,
Anchor Books, Random House
,
New York
.
41.
Bergman
,
T. D.
, and
Lavine
,
A. S.
,
2020
,
Fundamental of Heat and Mass Transfer
, 8th ed.,
Wiley
,
New York
.
42.
Zhang
,
J.
, and
Jaluria
,
Y.
,
2017
, “
Steady and Transient Behavior of Data Centers With Variations in Thermal Load and Environmental Conditions
,”
Int. J. Heat Mass Transfer
,
108
, pp.
374
385
.10.1016/j.ijheatmasstransfer.2016.12.028
43.
Poli
,
R.
,
2008
, “
Analysis of the Publications on the Applications of Particle Swarm Optimization
,”
J. Artif. Evol. Appl
,
2008
, pp.
1
10
.10.1155/2008/685175
44.
Zhang
,
Y.
,
Wang
,
S.
, and
Ji
,
G.
,
2015
, “
A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications
,”
Math. Probl. Eng.
,
2015
, pp.
1
38
.10.1155/2015/931256
45.
Tabrizi
,
A. B.
, and
Jaluria
,
Y.
,
2018
, “
An Optimization Strategy of the Inverse Solution of a Convection Heat Transfer Problem
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1147
1155
.10.1016/j.ijheatmasstransfer.2018.04.053
46.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge Univ. Press
,
Cambridge, UK
.
You do not currently have access to this content.