Abstract

This study emphasizes the aspects of heat transfer and transient thermal distribution through a rectangular fin profile when a stretching or shrinking mechanism is mounted on the surface of the fin. Furthermore, the effects of radiation, internal heat generation, and convection are all considered when developing the corresponding fin problem. The simulated time-dependent heat transfer equation is a partial differential equation that can be represented by dimensionless arrangement using appropriate nondimensional terms. The nonlinear dimensionless problem concerning the stretching/shrinking of a fin is numerically solved using the finite difference method (FDM), and the Levenberg–Marquardt method of backpropagation artificial neural network (LMM-BANN) has been used in this investigation. By varying the stretching/shrinking parameter, a set of data for the presented artificial neural network (ANN) is produced to discuss stretching and shrinking scenarios. The testing, training, and validation procedure of LMM-BANN, as well as correlation for verification of the validity of the proposed approach, establish the approximate solution to stretching/shrinking scenarios. The suggested model LMM-BANN is then validated using regression interpretation, mean square error, and histogram explorations. The ANN results and the procured numerical values agree well with the current numerical results.

References

1.
Khosroshahi
,
A. J.
, and
Hossainpour
,
S.
,
2022
, “
A Numerical Investigation on the Finned Storage Rotation Effect on the Phase Change Material Melting Process of Latent Heat Thermal Energy Storage System
,”
J. Energy Storage
,
55
, p.
105461
.10.1016/j.est.2022.105461
2.
Tabarhoseini
,
S. M.
, and
Sheikholeslami
,
M.
,
2022
, “
Modeling of Evacuated Tube Solar Collector Involving Longitudinal Fins and Nanofluids
,”
Sustainable Energy Technol. Assess.
,
53
, p.
102587
.10.1016/j.seta.2022.102587
3.
Hu
,
D.
,
Zhang
,
Q.
,
Song
,
K.
,
Gao
,
C.
,
Zhang
,
K.
,
Su
,
M.
, and
Wang
,
L.
,
2023
, “
Performance Optimization of a Wavy Finned-Tube Heat Exchanger With Staggered Curved Vortex Generators
,”
Int. J. Therm. Sci.
,
183
, p.
107830
.10.1016/j.ijthermalsci.2022.107830
4.
Das
,
R.
, and
Kundu
,
B.
,
2021
, “
New Forward and Inverse Solutions for Wet Fins Generalized Profiles With All Nonlinear Phenomena
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
2
), p.
021401
.10.1115/1.4048923
5.
Bai
,
Y.
,
Wan
,
S.
, and
Zhang
,
Y.
,
2021
, “
Unsteady Magnetohydrodynamics Stagnation-Point Flow of Fractional Oldroyd-B Fluid Over a Stretching Sheet With Modified Fractional Fourier's Law
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
9
), p.
093601
.10.1115/1.4051666
6.
Ramzan
,
M.
,
Alduais
,
F. S.
,
Dawar
,
A.
,
Saeed
,
A.
,
Kumam
,
P.
, and
Watthayu
,
W.
,
2022
, “
Effects of Soret and Dufour Numbers on the Three-Dimensional MHD Flow of Micropolar Fluid Containing Gyrotactic Microorganisms Over a Bidirectional Stretching Sheet With Cattaneo–Christov Heat and Mass Flux Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
10
), p.
101201
.10.1115/1.4054989
7.
Jha
,
B. K.
, and
Samaila
,
G.
,
2022
, “
The Combined Impact of Thermal Radiation and Thermophoresis on Buoyancy-Driven Flow Near an Inclined Porous Plate
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
10
), p.
102602
.10.1115/1.4055113
8.
Wang
,
F.
,
Varun Kumar
,
R. S.
,
Sowmya
,
G.
,
El-Zahar
,
E. R.
,
Prasannakumara
,
B. C.
,
Khan
,
M. I.
,
Khan
,
S. U.
,
Malik
,
M. Y.
, and
Xia
,
W.-F.
,
2022
, “
LSM and DTM-Pade Approximation for the Combined Impacts of Convective and Radiative Heat Transfer on an Inclined Porous Longitudinal Fin
,”
Case Stud. Therm. Eng.
,
35
, p.
101846
.10.1016/j.csite.2022.101846
9.
Mosayebidorcheh
,
S.
,
Rahimi-Gorji
,
M.
,
Ganji
,
D. D.
,
Moayebidorcheh
,
T.
,
Pourmehran
,
O.
, and
Biglarian
,
M.
,
2017
, “
Transient Thermal Behavior of Radial Fins of Rectangular, Triangular and Hyperbolic Profiles With Temperature-Dependent Properties Using DTM-FDM
,”
J. Cent. South Univ.
,
24
(
3
), pp.
675
682
.10.1007/s11771-017-3468-y
10.
Kundu
,
B.
,
Das
,
R.
,
Wankhade
,
P. A.
, and
Lee
,
K.-S.
,
2018
, “
Heat Transfer Improvement of a Wet Fin Under Transient Response With a Unique Design Arrangement Aspect
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1239
1251
.10.1016/j.ijheatmasstransfer.2018.08.110
11.
Pasha
,
A. V.
,
Jalili
,
P.
, and
Ganji
,
D. D.
,
2018
, “
Analysis of Unsteady Heat Transfer of Specific Longitudinal Fins With Temperature-Dependent Thermal Coefficients by DTM
,”
Alexandria Eng. J.
,
57
(
4
), pp.
3509
3521
.10.1016/j.aej.2017.11.019
12.
Turkyilmazoglu
,
M.
,
2020
, “
Expanding/Contracting Fin of Rectangular Profile
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
4
), pp.
1057
1068
.10.1108/HFF-02-2020-0099
13.
Sowmya
,
G.
,
Sarris
,
I. E.
,
Vishalakshi
,
C. S.
,
Kumar
,
R. S. V.
, and
Prasannakumara
,
B. C.
,
2021
, “
Analysis of Transient Thermal Distribution in a Convective–Radiative Moving Rod Using Two-Dimensional Differential Transform Method With Multivariate Pade Approximant
,”
Symmetry
,
13
(
10
), p.
1793
.10.3390/sym13101793
14.
Khan
,
U.
,
Zaib
,
A.
,
Abu Bakar
,
S.
, and
Ishak
,
A.
,
2021
, “
Stagnation-Point Flow of a Hybrid Nanoliquid Over a Non-Isothermal Stretching/Shrinking Sheet With Characteristics of Inertial and Microstructure
,”
Case Stud. Therm. Eng.
,
26
, p.
101150
.10.1016/j.csite.2021.101150
15.
Mousavi
,
S. M.
,
Rostami
,
M. N.
,
Yousefi
,
M.
,
Dinarvand
,
S.
,
Pop
,
I.
, and
Sheremet
,
M. A.
,
2021
, “
Dual Solutions for Casson Hybrid Nanofluid Flow Due to a Stretching/Shrinking Sheet: A New Combination of Theoretical and Experimental Models
,”
Chin. J. Phys.
,
71
, pp.
574
588
.10.1016/j.cjph.2021.04.004
16.
Khan
,
M. R.
,
Elkotb
,
M. A.
,
Matoog
,
R. T.
,
Alshehri
,
N. A.
, and
Abdelmohimen
,
M. A. H.
,
2021
, “
Thermal Features and Heat Transfer Enhancement of a Casson Fluid Across a Porous Stretching/Shrinking Sheet: Analysis of Dual Solutions
,”
Case Stud. Therm. Eng.
,
28
, p.
101594
.10.1016/j.csite.2021.101594
17.
Nadeem
,
M.
,
Siddique
,
I.
,
Awrejcewicz
,
J.
, and
Bilal
,
M.
,
2022
, “
Numerical Analysis of a Second-Grade Fuzzy Hybrid Nanofluid Flow and Heat Transfer Over a Permeable Stretching/Shrinking Sheet
,”
Sci. Rep.
,
12
(
1
), p.
1631
.10.1038/s41598-022-05393-7
18.
Algehyne
,
E. A.
,
Areshi
,
M.
,
Saeed
,
A.
,
Dawar
,
A.
,
Shah
,
Z.
, and
Kumam
,
P.
,
2022
, “
Three-Dimensional Magnetohydrodynamic Flow of Casson Fluid Past an Exponentially Stretching/Shrinking Sheet With Homogeneous-Heterogeneous Reactions
,”
Waves Random Complex Media
, pp.
1
22
.10.1080/17455030.2022.2050960
19.
Turkyilmazoglu
,
M.
,
2015
, “
Stretching/Shrinking Longitudinal Fins of Rectangular Profile and Heat Transfer
,”
Energy Convers. Manage.
,
91
, pp.
199
203
.10.1016/j.enconman.2014.12.007
20.
Mosavat
,
M.
,
Moradi
,
R.
,
Takami
,
M. R.
,
Gerdroodbary
,
M. B.
, and
Ganji
,
D. D.
,
2018
, “
Heat Transfer Study of Mechanical Face Seal and Fin by Analytical Method
,”
Eng. Sci. Technol., Int. J.
,
21
(
3
), pp.
380
388
.10.1016/j.jestch.2018.05.001
21.
Din
,
Z. U.
,
Ali
,
A.
,
Ullah
,
S.
,
Zaman
,
G.
,
Shah
,
K.
, and
Mlaiki
,
N.
,
2022
, “
Investigation of Heat Transfer From Convective and Radiative Stretching/Shrinking Rectangular Fins
,”
Math. Probl. Eng.
,
2022
, p.
e1026698
.10.1155/2022/1026698
22.
Rabbi
,
K. M.
,
Sheikholeslami
,
M.
,
Karim
,
A.
,
Shafee
,
A.
,
Li
,
Z.
, and
Tlili
,
I.
,
2020
, “
Prediction of MHD Flow and Entropy Generation by Artificial Neural Network in Square Cavity With Heater-Sink for Nanomaterial
,”
Phys. A
,
541
, p.
123520
.10.1016/j.physa.2019.123520
23.
Shah
,
Z.
,
Raja
,
M. A. Z.
,
Chu
,
Y.-M.
,
Khan
,
W. A.
,
Waqas
,
M.
,
Shoaib
,
M.
, and
Abbass
,
S. Z.
,
2020
, “
Design of Neural Network Based Intelligent Computing for Numerical Treatment of Unsteady 3D Flow of Eyring-Powell Magneto-Nanofluidic Model
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
14372
14387
.10.1016/j.jmrt.2020.09.098
24.
Ahmad
,
I.
,
Ilyas
,
H.
,
Raja
,
M. A. Z.
,
Khan
,
Z.
, and
Shoaib
,
M.
,
2021
, “
Stochastic Numerical Computing With Levenberg–Marquardt Backpropagation for Performance Analysis of Heat Sink of Functionally Graded Material of the Porous Fin
,”
Surf. Interfaces
,
26
, p.
101403
.10.1016/j.surfin.2021.101403
25.
Shafiq
,
A.
,
Çolak
,
A. B.
, and
Sindhu
,
T. N.
,
2022
, “
Optimization of Bioconvective Magnetized Walter's B Nanofluid Flow Towards a Cylindrical Disk With Artificial Neural Networks
,”
Lubricants
,
10
(
9
), p.
209
.10.3390/lubricants10090209
26.
Khan
,
N. A.
,
Sulaiman
,
M.
, and
Alshammari
,
F. S.
,
2022
, “
Heat Transfer Analysis of an Inclined Longitudinal Porous Fin of Trapezoidal, Rectangular and Dovetail Profiles Using Cascade Neural Networks
,”
Struct. Multidiscip. Optim.
,
65
(
9
), p.
251
.10.1007/s00158-022-03350-6
27.
Yarahmadi
,
M.
,
Mahan
,
J. R.
, and
McFall
,
K.
,
2020
, “
Artificial Neural Networks in Radiation Heat Transfer Analysis
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
9
), p.
092801
.10.1115/1.4047052
28.
Karim
,
A.
,
Kim
,
Y. J.
, and
Kim
,
J.-H.
,
2021
, “
Two-Dimensional Flow Boiling Characteristics With Wettability Surface in Microgap Heat Sink and Heat Transfer Prediction Using Artificial Neural Network
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
9
), p.
091601
.10.1115/1.4051602
29.
Prasad
,
K. S. R.
,
Krishna
,
V.
,
Bharadwaj
,
M. S.
, and
Ponangi
,
B. R.
,
2021
, “
Turbulent Heat Transfer Characteristics of Supercritical Carbon Dioxide for a Vertically Upward Flow in a Pipe Using Computational Fluid Dynamics and Artificial Neural Network
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
1
), p.
011802
.10.1115/1.4052687
30.
Baş
,
H.
, and
Keles
,
I.
,
2015
, “
Novel Approach to Transient Thermal Stress in an Annular Fin
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
705
710
.10.2514/1.T4535
31.
Ndlovu
,
P. L.
,
2019
, “
Analytical Study of Transient Heat Transfer in a Triangular Moving Porous Fin With Temperature Dependant Thermal Properties
,”
Defect Diffus. Forum
,
393
, pp.
31
46
.10.4028/www.scientific.net/DDF.393.31
32.
Abro
,
K. A.
, and
Gomez-Aguilar
,
J. F.
,
2021
, “
Fractional Modeling of Fin on Non-Fourier Heat Conduction Via Modern Fractional Differential Operators
,”
Arabian J. Sci. Eng.
,
46
(
3
), pp.
2901
2910
.10.1007/s13369-020-05243-6
33.
Najafi
,
H.
,
Uyanna
,
O.
, and
Zhang
,
J.
,
2020
, “
Application of Artificial Neural Network as a Near-Real Time Technique for Solving Non-Linear Inverse Heat Conduction Problems in a One-Dimensional Medium With Moving Boundary
,”
ASME
Paper No. HT2020-9054.10.1115/HT2020-9054
34.
Motahar
,
S.
, and
Jahangiri
,
M.
,
2020
, “
Transient Heat Transfer Analysis of a Phase Change Material Heat Sink Using Experimental Data and Artificial Neural Network
,”
Appl. Therm. Eng.
,
167
, p.
114817
.10.1016/j.applthermaleng.2019.114817
35.
Bora
,
A.
,
Dai
,
W.
,
Wilson
,
J. P.
,
Boyt
,
J. C.
, and
Sobolev
,
S. L.
,
2022
, “
Neural Network Method for Solving Nonlocal Two-Temperature Nanoscale Heat Conduction in Gold Films Exposed to Ultrashort-Pulsed Lasers
,”
Int. J. Heat Mass Transfer
,
190
, p.
122791
.10.1016/j.ijheatmasstransfer.2022.122791
36.
Sun
,
Y.
, and
Zhang
,
X.
,
2016
, “
Analysis of Transient Conduction and Radiation Problems Using Lattice Boltzmann and Finite Volume Methods
,”
Int. J. Heat Mass Transfer
,
97
, pp.
611
617
.10.1016/j.ijheatmasstransfer.2016.01.074
37.
Sobamowo
,
G. M.
,
Ogunmola
,
B. Y.
, and
Nzebuka
,
G.
,
2017
, “
Finite Volume Method for Analysis of Convective Longitudinal Fin With Temperature-Dependent Thermal Conductivity and Internal Heat Generation
,”
Defect Diffus. Forum
,
374
, pp.
106
120
.10.4028/www.scientific.net/DDF.374.106
38.
Wang
,
S.
, and
Ni
,
R.
,
2019
, “
Solving of Two-Dimensional Unsteady-State Heat-Transfer Inverse Problem Using Finite Difference Method and Model Prediction Control Method
,”
Complexity
,
2019
, p.
e7432138
.10.1155/2019/7432138
39.
Liu
,
Y.
,
Li
,
L.
, and
Zhang
,
Y.
,
2020
, “
Numerical Simulation of Non-Fourier Heat Conduction in Fins by Lattice Boltzmann Method
,”
Appl. Therm. Eng.
,
166
, p.
114670
.10.1016/j.applthermaleng.2019.114670
40.
Das
,
R.
,
2014
, “
Three-Parameter Estimation Study in a Radial Fin Geometry Using FDM-Based Simplex Method
,”
Heat Transfer Eng.
,
35
(
14–15
), pp.
1309
1319
.10.1080/01457632.2013.876866
41.
Sobamowo
,
M. G.
,
2017
, “
Analysis of Convective Longitudinal Fin With Temperature-Dependent Thermal Conductivity and Internal Heat Generation
,”
Alexandria Eng. J.
,
56
(
1
), pp.
1
11
.10.1016/j.aej.2016.04.022
You do not currently have access to this content.