Abstract

The concentrated solar thermal systems, operating in the medium temperature range of 373–573 K, will be extremely useful for several industrial processes. However, the need for an in-depth understanding of the turbulent heat transfer in parabolic trough absorbers with pure and hybrid nano-oils, including the effect of buoyancy or gravity, is realized. This paper presents the Reynolds-averaged Navier–Stokes (RANS)-based turbulent heat transfer analyses in a 3D, long, straight for Reynolds number from 5000 to 20,000 and discrete heating conditions with different heat flux ratios such as 1, 5, 10, 20, 40, and 50 for pure oil and hybrid nano-oils having 1, 4, and 6% volume concentration of the nanoparticles. The major findings are, (a) gravity-induced anisotropy leads to high and low-speed fluid flows near the lower and upper walls, and temperature redistribution at a plane, which is beneficial, (b) the statistical axial-velocity deviates from the standard logarithmic law at a Reynolds number of 5000, and (c) the ratio of surface-area-averaged Nusselt number between the lower half and upper half of the tube is 4–12. Some important recommendations are (a) the effect of gravity must be included, (b) the local Richardson number may be used for improving the standard logarithmic law for the axial velocity, and (c) Nusselt number correlations are deduced for the upper half surface and lower half surfaces. The findings, albeit for limited parameters, will be useful for improving the heat transfer aspects in the parabolic trough absorber.

References

1.
Pranesh
,
V.
,
Velraj
,
R.
,
Christopher
,
S.
, and
Kumaresan
,
V.
,
2019
, “
A 50 Year Review of Basic and Applied Research in Compound Parabolic Concentrating Solar Thermal Collector for Domestic and Industrial Applications
,”
Sol. Energy
,
187
, pp.
293
340
.10.1016/j.solener.2019.04.056
2.
Hussein
,
A. K.
,
2015
, “
Applications of Nanotechnology in Renewable Energies - A Comprehensive Overview and Understanding
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
460
476
.10.1016/j.rser.2014.10.027
3.
Hussein
,
A. K.
,
Waljung
,
A. A.
, and
Kolsi
,
L.
,
2016
, “
Applications of Nanotechnology to Enhance the Performance of the Direct Absorption Solar Collectors
,”
J. Therm. Eng.
,
2
(
1
), pp.
529
540
.https://eds.yildiz.edu.tr/ArticleContent/Journal/journalof-thermal- engineering/Volumes/2016/Issues/1/JT EN-2016-2-1.885.pdf
4.
Hussein
,
A. K.
,
2016
, “
Applications of Nanotechnology to Improve the Performance of Solar Collectors - Recent Advances and Overview
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
767
792
.10.1016/j.rser.2016.04.050
5.
Hussein
,
A. K.
,
Li
,
D.
,
Kolsi
,
L.
,
Kata
,
S.
, and
Sahoo
,
B.
,
2017
, “
A Review of Nano Fluid Role to Improve the Performance of the Heat Pipe Solar Collectors
,”
Energy Procedia
,
109
, pp.
417
424
.10.1016/j.egypro.2017.03.044
6.
Benabderrahmane
,
A.
,
Benazza
,
A.
, and
Hussein
,
A. K.
,
2020
, “
Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector With Central Corrugated Insert
,”
ASME J. Heat Mass Trans.
,
142
(
6
), p.
062001
.10.1115/1.4046440
7.
Tiwari
,
A. K.
,
Kumar
,
V.
,
Said
,
Z.
, and
Paliwal
,
H. K.
,
2021
, “
A Review on the Application of Hybrid Nanofluids for Parabolic Trough Collector: Recent Progress and Outlook
,”
J. Clean. Prod.
,
292
, p.
126031
.10.1016/j.jclepro.2021.126031
8.
Panduro
,
E. A. C.
,
Finotti
,
F.
,
Largiller
,
G.
, and
Lervag
,
K. Y.
,
2022
, “
A Review of the Use of Nanofluids as Heat-Transfer Fluids in Parabolic-Trough Collectors
,”
Appl. Therm. Eng.
,
211
, p.
118346
.10.1016/j.applthermaleng.2022.118346
9.
Krishna
,
Y.
,
Faizal
,
M.
,
Saidur
,
R.
,
Ng
,
K. C.
, and
Aslfattahi
,
N.
,
2020
, “
State-of-the-Art Heat Transfer Fluids for Parabolic Trough Collector
,”
Int. J. Heat Mass Transfer
,
152
, p.
119541
.10.1016/j.ijheatmasstransfer.2020.119541
10.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
11.
He
,
Y.
,
Xiao
,
J.
,
Cheng
,
Z.
, and
Tao
,
Y.
,
2011
, “
A MCRT and FVM Coupled Simulation Method for Energy Conversion Process in Parabolic Trough Solar Collector
,”
Renew. Energy
,
36
(
3
), pp.
976
985
.10.1016/j.renene.2010.07.017
12.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2011
, “
Numerical Investigation on Nano Fluids Turbulent Convection Heat Transfer Inside a Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
341
349
.10.1016/j.ijthermalsci.2010.03.008
13.
Munoz
,
J.
, and
Abanades
,
A.
,
2011
, “
Analysis of Internal Helically Finned Tubes for Parabolic Trough Design by CFD Tools
,”
Appl. Energy
,
88
(
11
), pp.
4139
4149
.10.1016/j.apenergy.2011.04.026
14.
Ghasemi
,
S. E.
, and
Ranjbar
,
A. A.
,
2017
, “
Numerical Thermal Study on Effect of Porous Rings on Performance of Solar Parabolic Trough Collector
,”
Appl. Therm. Eng.
,
118
, pp.
807
816
.10.1016/j.applthermaleng.2017.03.021
15.
Yılmaz
,
I. H.
, and
Mwesigye
,
A.
,
2018
, “
Modeling, Simulation and Performance Analysis of Parabolic Trough Solar Collectors: A Comprehensive Review
,”
Appl. Energy
,
225
, pp.
135
174
.10.1016/j.apenergy.2018.05.014
16.
Wang
,
F.
,
Tan
,
J.
,
Ma
,
L.
, and
Wang
,
C.
,
2015
, “
Effects of Glass Cover on Heat Flux Distribution for Tube Receiver With Parabolic Trough Collector System
,”
Energy Convers. Manag.
,
90
, pp.
47
52
.10.1016/j.enconman.2014.11.004
17.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Cui
,
F. Q.
,
Xu
,
R. J.
, and
Tao
,
Y. B.
,
2012
, “
Numerical Simulation of a Parabolic Trough Solar Collector With Nonuniform Solar Flux Conditions by Coupling FVM and MCRT Method
,”
Sol. Energy
,
86
(
6
), pp.
1770
1784
.10.1016/j.solener.2012.02.039
18.
Xu
,
Y.
,
Tian
,
R.
,
Dai
,
X.
, and
Shi
,
L.
,
2022
, “
Coupling Effect Between Heat Flux Distribution and Buoyancy of Supercritical CO2 Heat Transfer With Nonuniform Heat Flux in Parabolic-Trough Collector
,”
Int. J. Heat Mass Transfer
,
195
, p.
123197
.10.1016/j.ijheatmasstransfer.2022.123197
19.
Ghasemi
,
S. E.
, and
Ranjbar
,
A. A.
,
2016
, “
Thermal Performance Analysis of Solar Parabolic Trough Collector Using Nanofluid as Working Fluid: A CFD Modelling Study
,”
J. Mol. Liq.
,
222
, pp.
159
166
.10.1016/j.molliq.2016.06.091
20.
Spirkl
,
W.
,
Ries
,
H.
,
Muschaweck
,
J.
, and
Timinger
,
A.
,
1997
, “
Optimized Compact Secondary Reflectors for Parabolic Troughs With Tubular Absorbers
,”
Sol. Energy
,
61
(
3
), pp.
153
158
.10.1016/S0038-092X(97)00047-9
21.
Balaji
,
S.
,
Reddy
,
K. S.
, and
Sundararajan
,
T.
,
2016
, “
Optical Modelling and Performance Analysis of a Solar LFR Receiver System With Parabolic and Involute Secondary Reflectors
,”
Appl. Energy
,
179
, pp.
1138
1151
.10.1016/j.apenergy.2016.07.082
22.
Gong
,
J.
,
Wang
,
J.
,
Lund
,
P. D.
,
Hu
,
E.
,
Xu
,
Z.
,
Liu
,
G.
, and
Li
,
G.
,
2020
, “
Improving the Performance of a 2-Stage Large Aperture Parabolic Trough Solar Concentrator Using a Secondary Reflector Designed by Adaptive Method
,”
Renew. Energy
,
152
, pp.
23
33
.10.1016/j.renene.2020.01.019
23.
Tang
,
X. Y.
,
Yang
,
W. W.
,
Yang
,
Y.
,
Jiao
,
Y. H.
, and
Zhang
,
T.
,
2021
, “
A Design Method for Optimizing the Secondary Reflector of a Parabolic Trough Solar Concentrator to Achieve Uniform Heat Flux Distribution
,”
Energy
,
229
, p.
120749
.10.1016/j.energy.2021.120749
24.
Shajan
,
S.
, and
Baiju
,
V.
,
2022
, “
Designing a Novel Small-Scale Parabolic Trough Solar Thermal Collector With Secondary Reflector for Uniform Heat Flux Distribution
,”
Appl. Therm. Eng.
,
213
, p.
118660
.10.1016/j.applthermaleng.2022.118660
25.
Wang
,
Y.
,
Liu
,
Q.
,
Lei
,
J.
, and
Jin
,
H.
,
2015
, “
Performance Analysis of a Parabolic Trough Solar Collector With Non-Uniform Solar Flux Conditions
,”
Int. J. Heat Mass Transfer
,
82
, pp.
236
249
.10.1016/j.ijheatmasstransfer.2014.11.055
26.
Mohammed
,
H. A.
,
Vuthaluru
,
H. B.
, and
Liu
,
S.
,
2021
, “
Heat Transfer Augmentation of Parabolic Trough Solar Collector Receiver's Tube Using Hybrid Nano Fluids and Conical Turbulators
,”
J. Taiwan Inst. Chem. Eng.
,
125
, pp.
215
242
.10.1016/j.jtice.2021.06.032
27.
Chakraborty
,
O.
,
Das
,
B.
,
Gupta
,
R.
, and
Debbarma
,
S.
,
2020
, “
Heat Transfer Enhancement Analysis of Parabolic Trough Collector With Straight and Helical Absorber Tube
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100718
.10.1016/j.tsep.2020.100718
28.
Mwesigye
,
A.
, and
Huan
,
Z.
,
2015
, “
Thermodynamic Analysis and Optimization of Fully Developed Turbulent Forced Convection in a Circular Tube With Water-Al2O3 Nanofluid
,”
Int. J. Heat Mass Transfer
,
89
, pp.
694
706
.10.1016/j.ijheatmasstransfer.2015.05.099
29.
Saha
,
G.
, and
Paul
,
M. C.
,
2014
, “
Numerical Analysis of the Heat Transfer Behaviour of Water Based Al2O3 and TiO2 Nanofluids in a Circular Pipe Under the Turbulent Flow Condition
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
96
108
.10.1016/j.icheatmasstransfer.2014.06.008
30.
Huang
,
Z.
,
Li
,
Z.
, and
Tao
,
W.
,
2017
, “
Numerical Study on Combined Natural and Forced Convection in the Fully-Developed Turbulent Region for a Horizontal Circular Tube Heated by Non-Uniform Heat Flux
,”
Appl. Energy
,
185
, pp.
2194
2208
.10.1016/j.apenergy.2015.11.066
31.
Polyakov
,
A. F.
,
1976
, “
Development of Secondary Free Convection Currents in Forced Turbulent Flow in Horizontal Tubes
,”
J. Appl. Mech. Tech. Phys.
,
15
(
5
), pp.
632
637
.10.1007/BF00851521
32.
Balin
,
R.
, and
Jansen
,
K. E.
,
2021
, “
Direct Numerical Simulation of a Turbulent Boundary Layer Over a Bump With Strong Pressure Gradients
,”
J. Fluid Mech.
,
918
, pp.
1
32
.10.1017/jfm.2021.312
33.
Balachandar
,
R.
,
Blakely
,
D.
, and
Bugg
,
J.
,
2002
, “
Friction Velocity and Power Law Velocity Profile in Smooth and Rough Shallow Open Channel Flows
,”
Can. J. Civ. Eng.
,
29
(
2
), pp.
256
266
.10.1139/l01-093
34.
Tejada-Martínez
,
A. E.
,
Grosch
,
C. E.
,
Sinha
,
N.
,
Akan
,
C.
, and
Martinat
,
G.
,
2012
, “
Disruption of the Bottom Log Layer in Large-Eddy Simulations of Full-Depth Langmuir Circulation
,”
J. Fluid Mech.
,
699
, pp.
79
93
.10.1017/jfm.2012.84
35.
Wang
,
K.
,
Zhang
,
Z.
,
Zhang
,
X.
, and
Min
,
C.
,
2021
, “
Buoyancy Effects on Convective Heat Transfer of Supercritical CO2 and Thermal Stress in Parabolic Trough Receivers Under Non-Uniform Solar Flux Distribution
,”
Int. J. Heat Mass Transfer
,
175
, p.
121130
.10.1016/j.ijheatmasstransfer.2021.121130
36.
Vignarooban
,
K.
,
Xu
,
X.
,
Arvay
,
A.
,
Hsu
,
K.
, and
Kannan
,
A. M.
,
2015
, “
Heat Transfer Fluids for Concentrating Solar Power Systems – A Review
,”
Appl. Energy
,
146
, pp.
383
396
.10.1016/j.apenergy.2015.01.125
37.
Upadhyay
,
S.
,
Chandra
,
L.
, and
Sarkar
,
J.
,
2021
, “
A Generalized Nusselt Number Correlation for Nanofluids, and Look-Up Diagrams to Select a Heat Transfer Fluid for Medium Temperature Solar Thermal Applications
,”
Appl. Therm. Eng.
,
190
, p.
116469
.10.1016/j.applthermaleng.2020.116469
38.
Sarkar
,
J.
,
2011
, “
A Critical Review on Convective Heat Transfer Correlations of Nanofluids
,”
Renew. Sustain. Energy Rev.
,
15
(
6
), pp.
3271
3277
.10.1016/j.rser.2011.04.025
39.
Chand
,
R.
,
Rana
,
G. C.
, and
Hussein
,
A. K.
,
2015
, “
On the Onsetof Thermal Instability in a Low Prandtl Number Nanofluid Layer in a Porous Medium
,”
J. Appl. Fluid Mech.
,
8
(
2
), pp.
265
272
.https://www.jafmonline.net/article_1512_b51a0f78987988b02cb81e4bb674fd4d.pdf
40.
Biswal
,
U.
,
Chakraverty
,
S.
,
Ojha
,
B. K.
, and
Hussein
,
A. K.
,
2022
, “
Numerical Investigation on Nanofluid Flow Between Two Inclined Stretchable Walls by Optimal Homotopy Analysis Method
,”
J. Comput. Sci.
,
63
, p.
101759
.10.1016/j.jocs.2022.101759
41.
Chaudhari
,
K. S.
,
Walke
,
P. V.
,
Wankhede
,
U. S.
, and
Shelke
,
R. S.
,
2015
, “
An Experimental Investigation of a Nanofluid (Al2O3 + H2O) Based Parabolic Trough Solar Collectors
,”
Br. J. Appl. Sci. Technol.
,
9
(
6
), pp.
551
557
.10.9734/BJAST/2015/11946
42.
Coccia
,
G.
,
Di
,
G.
,
Colla
,
L.
,
Fedele
,
L.
, and
Scattolini
,
M.
,
2016
, “
Adoption of Nanofluids in Low-Enthalpy Parabolic Trough Solar Collectors: Numerical Simulation of the Yearly Yield
,”
Energy Convers. Manag.
,
118
, pp.
306
319
.10.1016/j.enconman.2016.04.013
43.
Kasaeian
,
A.
,
Daviran
,
S.
,
Azarian
,
R. D.
, and
Rashidi
,
A.
,
2015
, “
Performance Evaluation and Nanofluid Using Capability Study of a Solar Parabolic Trough Collector
,”
Energy Convers. Manag.
,
89
, pp.
368
375
.10.1016/j.enconman.2014.09.056
44.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector With Cu-Therminol®VP-1 Nanofluid
,”
Energy Convers. Manag.
,
120
, pp.
449
465
.10.1016/j.enconman.2016.04.106
45.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
.10.1016/j.apenergy.2017.02.064
46.
Sokhansefat
,
T.
,
Kasaeian
,
A. B.
, and
Kowsary
,
F.
,
2014
, “
Heat Transfer Enhancement in Parabolic Trough Collector Tube Using Al2O3/Synthetic Oil Nanofluid
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
636
644
.10.1016/j.rser.2014.02.028
47.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Thermal Analysis of Parabolic Trough Collector Operating With Mono and Hybrid Nanofluids
,”
Sustain. Energy Technol. Assess.
,
26
, pp.
105
115
.10.1016/j.seta.2017.10.005
48.
Al-Oran
,
O.
,
Lezsovits
,
F.
, and
Aljawabrah
,
A.
,
2020
, “
Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1579
1596
.10.1007/s10973-020-09371-x
49.
Rostami
,
S.
,
Sepehrirad
,
M.
,
Dezfulizadeh
,
A.
,
Hussein
,
A. K.
,
Goldanlou
,
A. S.
, and
Shadloo
,
M. S.
,
2020
, “
Exergy Optimization of a Solar Collector in Flat Plate Shape Equipped With Elliptical Pipes Filled With Turbulent Nanofluid Flow: A Study for Thermal Management
,”
Water
,
12
(
8
), p.
2294
.10.3390/w12082294
50.
Vahedi
,
B.
,
Golab
,
E.
,
Sadr
,
A. N.
, and
Vafai
,
K.
,
2022
, “
Thermal, Thermodynamic and Exergoeconomic Investigation of a Parabolic Trough Collector Utilizing Nanofluids
,”
Appl. Therm. Eng.
,
206
, p.
118117
.10.1016/j.applthermaleng.2022.118117
51.
Fahim
,
T.
,
Laouedj
,
S.
,
Abderrahmane
,
A.
,
Alotaibi
,
S.
,
Younis
,
O.
, and
Ali
,
H. M.
,
2022
, “
Heat Transfer Enhancement in Parabolic Through Solar Receiver: A Three-Dimensional Numerical Investigation
,”
Nanomaterials
,
12
(
3
), p.
419
.10.3390/nano12030419
52.
Chang
,
C.
,
Li
,
X.
, and
Zhang
,
Q. Q.
,
2014
, “
Experimental and Numerical Study of the Heat Transfer Characteristics in Solar Thermal Absorber Tubes With Circumferentially Non-Uniform Heat Flux
,”
Energy Procedia
,
49
, pp.
305
313
.10.1016/j.egypro.2014.03.033
53.
Remley
,
T. J.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
,
Ghiaasiaan
,
S. M.
, and
Dowling
,
M. F.
,
2001
, “
Effect of Non-Uniform Heat Flux on Wall Friction and Convection Heat Transfer Coefficient in a Trapezoidal Channel
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2453
2459
.10.1016/S0017-9310(00)00295-7
54.
ANSYS Academic Research
,
2013
, “
ANSYS FLUENT Theory Guide 15.0
,”
ANSYS Inc.
, Canonsburg, PA.
55.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics the Finite Volume Method
,
Pearson Education Limited
, Harlow, UK.
56.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A.
,
2013
,
Principles of Heat and Mass Transfer
,
Wiley
,
Singapore
.
57.
Eastman
,
2022
, “
Therminol VP-1, Technical Bulletin TF9141
,” accessed Mar. 7, 2023, https://www.eastman.com/Literature_Center/T/TF9141.pdf
58.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
59.
Sahu
,
M.
, and
Sarkar
,
J.
,
2019
, “
Steady-State Energetic and Exergetic Performances of Single-Phase Natural Circulation Loop With Hybrid Nanofluids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
8
), p.
082401
.10.1115/1.4043819
60.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
61.
Upadhyay
,
S.
,
Savant
,
P. R.
,
Chandra
,
L.
, and
Sarkar
,
J.
,
2022
, “
Generalized Nusselt Number Correlation for Binary Hybrid Nano-Oils as Heat Transfer Fluid in Solar Thermal Systems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
7
), p.
072901
.10.1115/1.4054279
62.
Som
,
S. K.
, and
Biswas
,
G.
,
2008
,
Introduction to Fluid Mechanics Fluid Machines
,
Tata McGraw-Hill Publishing
,
New Delhi, India
.
63.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
, New York.
You do not currently have access to this content.