Abstract

In numerical heat transfer analysis, despite the involvement of the finite dimension in the geometries of heat-exchanging devices, these dimensions are frequently assumed to be adequately thin and hence neglected for the ease of analysis. But it may be essential to include the finite dimension of the heat transfer equipment which makes the study more realistic. There remains a dearth of literature in which the results of the fin heat transfer obtained from these considerations are compared, although existing numerical reports consider fin heat transfer—some including fin-thickness and the rest neglecting fin-thickness in the flow geometry. This acts as a motivation to examine and compare the results obtained from a study of numerical heat transfer on a shrouded vertical fin array including and neglecting fin-thickness in the flow geometry under mixed convection. From the present computations, it is noted that with the consideration of the fin-thickness, there is a possibility of an increase in axial pressure defect by around 45% indicating the requirement for higher pumping power. Again for the chosen range of parameters, overall Nusselt number increases by around 18% as compared to neglected fin-thickness that may arise due to altered heat transfer coefficient caused by higher velocity over the extended surface to accommodate finite fin dimension. Finally, pressure drop and Nusselt number are correlated with the governing parameters including fin-thickness.

References

1.
Sparrow
,
E. M.
,
Baliga
,
B. R.
, and
Patankar
,
S. V.
,
1978
, “
Forced Convection Heat Transfer From a Shrouded Fin Array With and Without Tip Clearance
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
100
(
4
), pp.
572
579
.10.1115/1.3450859
2.
Sparrow
,
E. M.
, and
Kadle
,
D. S.
,
1986
, “
Effect of Tip to Shroud Clearance on Turbulent Heat Transfer From a Shrouded Longitudinal Fin Array
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
3
), pp.
519
524
.10.1115/1.3246965
3.
Kadle
,
D. S.
, and
Sparrow
,
E. M.
,
1986
, “
Numerical and Experimental Study of Turbulent Heat Transfer and Fluid Flow in Longitudinal Fin Array
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
1
), pp.
16
23
.10.1115/1.3246883
4.
Acharya
,
S.
, and
Patankar
,
S. V.
,
1981
, “
Laminar Mixed Convection in a Shrouded Fin Array
,”
ASME J. Heat Transfer- Trans. ASME
,
103
(
3
), pp.
559
565
.10.1115/1.3244502
5.
Zhang
,
Z.
, and
Patankar
,
S. V.
,
1984
, “
Influence of Buoyancy on the Vertical Flow and Heat Transfer in a Shrouded Fin Array
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
137
140
.10.1016/0017-9310(84)90245-X
6.
Al-Sarkhi
,
A.
,
2005
, “
Comparison Between Variable and Constant Height Shrouded Fin Array Subjected to Forced Convection Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
548
556
.10.1016/j.icheatmasstransfer.2004.02.017
7.
Karki
,
K. C.
, and
Patankar
,
S. V.
,
1987
, “
Cooling of a Vertical Shrouded Fin Array by Natural Convection: A Numerical Study
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
109
(
3
), pp.
671
676
.10.1115/1.3248140
8.
Sukhatme
,
S. P.
,
1986
, “
Heat Transfer From Rectangular Vertical Fin Arrays
,” In
Current Research in Heat and Mass Transfer (A Compendium and a Festschrift for Prof. Arcot Ramachandran
,
M. V.
KrishnaMurthy
,
V. M.
Krishna Sastri
,
P. K.
Sarma
, and
S. P.
Sukhatme)
, Indian Soc. Heat Mass Transfer, eds.,
Hemisphre/Springer-Verlag
, pp.
245
258
.
9.
Giri
,
A.
,
Narasimham
,
G.
, and
Krishna Murthy
,
M. V.
,
2003
, “
Combined Natural Convection Heat and Mass Transfer From Vertical Fin Arrays
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
100
113
.10.1016/S0142-727X(02)00209-6
10.
Mobedi
,
M.
, and
Yüncü
,
H.
,
2003
, “
A Three Dimensional Numerical Study on Natural Convection Heat Transfer From Short Horizontal Rectangular Fin Array
,”
Heat Mass Transfer
,
39
(
4
), pp.
267
275
.10.1007/s00231-002-0360-5
11.
Baskaya
,
S.
,
Sivrioglu
,
M.
, and
Ozek
,
M.
,
2000
, “
Parametric Study of Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays
,”
Int. J. Therm. Sci.
,
39
(
8
), pp.
797
805
.10.1016/S1290-0729(00)00271-4
12.
Yalcin
,
H. G.
,
Baskaya
,
S.
, and
Sivrioglu
,
M.
,
2008
, “
Numerical Analysis of Natural Convection Heat Transfer From Rectangular Shrouded Fin Arrays on a Horizontal Surface
,”
Int. Commun. Heat Mass Transfer
,
35
(
3
), pp.
299
311
.10.1016/j.icheatmasstransfer.2007.07.009
13.
Spalding
,
D. B.
,
1994
,
The PHOENICS Encyclopedia
,
CHAM
,
London
14.
Harahap
,
F.
, and
McManus
, and
H. N.
, Jr.
,
1967
, “
Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
89
(
1
), pp.
32
38
.10.1115/1.3614318
15.
Naik
,
S.
,
Probert
,
S. D.
, and
Wood
,
C. I.
,
1987
, “
Natural-Convection Characteristics of a Horizontally-Based Vertical Rectangular Fin-Array in the Presence of a Shroud
,”
Appl. Energy
,
28
(
4
), pp.
295
319
.10.1016/0306-2619(87)90033-X
16.
Dialameh
,
L.
,
Yaghoubi
,
M.
, and
Abouali
,
O.
,
2008
, “
Natural Convection From an Array of Horizontal Rectangular Thick Fins With Short Length
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2371
2379
.10.1016/j.applthermaleng.2008.01.020
17.
Nair
,
D. V.
, and
GhoshDastidar
,
P. S.
,
2018
, “
A Comparative Study of 2-D and 3-D Conjugate Natural Convection From a Vertical Rectangular Fin Array With Multilayered Base Subjected to Distributed High Heat Flux
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1316
1334
.10.1016/j.ijheatmasstransfer.2017.12.037
18.
Sobhan
,
C. B.
,
Venkateshan
,
S. P.
, and
Seetharamu
,
K. N.
,
1990
, “
Experimental Studies on Steady Free Convection Heat Transfer From Fins and Fin Arrays
,”
Wärme-Und Stoffübertragung
,
25
(
6
), pp.
345
352
.10.1007/BF01811558
19.
GhoshDastidar
,
P. S.
,
1998
,
Computer Simulation of Flow and Heat Transfer
,
Tata McGraw-Hill Publishing Company Limited
,
New Delhi, India
.
20.
Huang
,
G. J.
, and
Wong
,
S. C.
,
2012
, “
Dynamic Characteristics of Natural Convection From Horizontal Rectangular Fin Arrays
,”
Appl. Therm. Eng.
,
42
, pp.
81
89
.10.1016/j.applthermaleng.2012.03.019
21.
Huang
,
G. J.
,
Wong
,
S. C.
, and
Lin
,
C. P.
,
2014
, “
Enhancement of Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays With Perforations in Fin Base
,”
Int. J. Therm. Sci.
,
84
, pp.
164
174
.10.1016/j.ijthermalsci.2014.05.017
22.
Jeon
,
D.
, and
Byon
,
C.
,
2017
, “
Thermal Performance of Plate Fin Heat Sinks With Dual-Height Fins Subject to Natural Convection
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1086
1092
.10.1016/j.ijheatmasstransfer.2017.06.031
23.
Nair
,
D. V.
,
2020
, “
Enhancement of Free Convection From Horizontal-Base Straight-Fin Heat Sink by Partial Shrouding
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031023
.10.1115/1.4046021
24.
Yüncü
,
H.
, and
Anbar
,
G.
,
1998
, “
An Experimental Investigation on Performance of Rectangular Fins on a Horizontal Base in Free Convection Heat Transfer
,”
Heat Mass Transfer
,
33
(
5–6
), pp.
507
514
.10.1007/s002310050222
25.
Rakshit
,
D.
, and
Balaji
,
C.
,
2005
, “
Thermodynamic Optimization of Conjugate Convection From a Finned Channel Using Genetic Algorithms
,”
Heat Mass Transfer
,
41
(
6
), pp.
535
544
.10.1007/s00231-004-0569-6
26.
Arquis
,
E.
, and
Rady
,
M.
,
2005
, “
Study of Natural Convection Heat Transfer in a Finned Horizontal Fluid Layer
,”
Int. J. Therm. Sci.
,
44
(
1
), pp.
43
52
.10.1016/j.ijthermalsci.2004.04.011
27.
Rao
,
V. D.
,
Naidu
,
S. V.
,
Rao
,
B. G.
, and
Sharma
,
K. V.
,
2006
, “
Heat Transfer From a Horizontal Fin Array by Natural Convection and Radiation—A Conjugate Analysis
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3379
3391
.10.1016/j.ijheatmasstransfer.2006.03.010
28.
Roache
,
P. J.
,
1985
,
Computational Fluid Dynamics
,
Hermosa
,
Albuquerque, NM
.
29.
Rao
,
R.
, and
Venkateshan
,
S. P.
,
1996
, “
Experimental Study of Free Convection and Radiation in Horizontal Fin Arrays
,”
Int. J. Heat Mass Transfer
,
39
(
4
), pp.
779
789
.
30.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
96
, pp.
330
345
.10.1016/j.ijheatmasstransfer.2016.01.024
31.
Leung
,
C. W.
,
Probert
,
S. D.
, and
Shilston
,
M. J.
,
1985
, “
Heat Exchanger Design: Thermal Performances of Rectangular Fins Protruding From Vertical or Horizontal Rectangular Bases
,”
Appl. Energy
,
20
(
2
), pp.
123
140
.10.1016/0306-2619(85)90029-7
32.
Leung
,
C. W.
,
Probert
,
S. D.
, and
Shilston
,
M. J.
,
1986
, “
Heat Transfer Performances of Vertical Rectangular Fins Protruding From Bases: Effect of Fin Length
,”
Appl. Energy
,
22
(
4
), pp.
313
318
.10.1016/0306-2619(86)90040-1
33.
Leung
,
C. W.
, and
Probert
,
S. D.
,
1988
, “
Heat Exchanger Design: Optimal Thickness (Under Natural Convective Conditions) of Vertical Rectangular Fins Protruding Upwards From a Horizontal Rectangular Base
,”
Appl. Energy
,
29
(
4
), pp.
299
306
.10.1016/0306-2619(88)90040-2
34.
Mehrtash
,
M.
, and
Tari
,
I.
,
2013
, “
A Correlation for Natural Convection Heat Transfer From Inclined Plate-Finned Heat Sinks
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1067
1075
.10.1016/j.applthermaleng.2012.10.043
35.
Tari
,
I.
, and
Mehrtash
,
M.
,
2013
, “
Natural Convection Heat Transfer From Horizontal and Slightly Inclined Plate-Fin Heat Sinks
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
728
736
.10.1016/j.applthermaleng.2013.09.003
36.
Roy
,
K.
, and
Das
,
B.
,
2021
, “
Influence of Property Variation on Natural Convection in an Isothermal Vertical Finned Channel: An Extended Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031019-1-10
.10.1115/1.4048415
37.
Abbas
,
A.
, and
Wang
,
C.
,
2020
, “
Augmentation of Natural Convection Heat Sink Via Using Displacement Design
,”
Int. J. Heat Mass Transfer
,
154
, p.
119757
.10.1016/j.ijheatmasstransfer.2020.119757
38.
Karlapalem
,
V.
,
Rath
,
S.
, and
Dash
,
S. K.
,
2019
, “
Orientation Effects on Laminar Natural Convection Heat Transfer From Branching-Fins
,”
Int. J. Therm. Sci.
,
142
, pp.
89
105
.10.1016/j.ijthermalsci.2019.04.007
39.
Tsai
,
G. L.
,
Li
,
H. Y.
, and
Lin
,
C. C.
,
2010
, “
Effect of the Angle of Inclination of a Plate Shield on the Thermal and Hydraulic Performance of a Plate-Fin Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
37
(
4
), pp.
364
371
.10.1016/j.icheatmasstransfer.2010.01.002
40.
Dogan
,
M.
, and
Sivrioglu
,
M.
,
2012
, “
Experimental and Numerical Investigation of Clearance Gap Effects on Laminar Mixed Convection Heat Transfer From Fin Array in a Horizontal Channel-A Conjugate Analysis
,”
App. Therm. Eng.
,
40
, pp.
102
113
.10.1016/j.applthermaleng.2012.02.003
41.
Mokhtari
,
M.
,
Gerdroodbary
,
M. B.
,
Yeganeh
,
R.
, and
Fallah
,
K.
,
2017
, “
Numerical Study of Mixed Convection Heat Transfer of Various Fin Arrangements in a Horizontal Channel
,”
Eng. Sci. Technol.-An Int. J.
,
20
(
3
), pp.
1106
1114
.
42.
Pathak
,
K. K.
, and
Giri
,
A.
,
2017
, “
Comparison Between Exact Thermal Boundary Condition and Harmonic Mean Conductivity Condition at the Solid–Fluid Interface for Finite Thickness Shrouded Non-Isothermal Fin Array
,”
Appl. Math. Model.
,
45
, pp.
323
335
.10.1016/j.apm.2016.12.014
43.
Biswas
,
G.
, and
Chattopadhyay
,
H.
,
1992
, “
Heat Transfer in a Channel With Built-in Wing-Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
803
814
.10.1016/0017-9310(92)90248-Q
44.
Biswas
,
G.
,
Deb
,
P.
, and
Biswas
,
S.
,
1994
, “
Generation of Longitudinal Streamwise Vortices–A Device for Improving Heat Exchanger Design
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
3
), pp.
588
597
.10.1115/1.2910910
45.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3441
3451
.10.1016/0017-9310(95)00398-3
46.
Lin
,
K. T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
General Correlations for Laminar Flow Friction Loss and Heat Transfer in Plain Rectangular Plate-Fin Cores
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
12
), p.
121801
.10.1115/1.4048091
47.
Shi
,
D.
,
Lin
,
K. T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2021
, “
Characterization and Scaling of Forced Convective Swirl in Sinusoidal Wavy-Plate-Fin Cores of Compact Heat Exchangers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
2
), p.
021901
.10.1115/1.4048921
48.
Shi
,
D.
,
Lin
,
K. T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2022
, “
Role of Three-Dimensional Swirl in Forced Convection Heat Transfer Enhancement in Wavy-Plate-Fin Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
5
), p.
052001
.10.1115/1.4053456
49.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere\McGraw-Hill
,
New York
.
50.
Maughan
,
J. R.
, and
Incropera
,
F. P.
,
1990
, “
Mixed Convection Heat Transfer With Longitudinal Fins in a Horizontal Parallel Plate Channel: Part II—Experimental Results
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
3
), pp.
619
624
.10.1115/1.2910432
You do not currently have access to this content.