Abstract

The technical brief presents, analysis of boundary layer flow and heat transfer in nanofluids under the influence of magnetic field, thermal radiation and chemical reaction over non-isothermal stretching surface through permeable porous medium. The self-similarity equations obtained from governing equations are solved using shifted Chebyshev and Haar wavelet collocation methods. The prescribed surface temperature, prescribed heat flux cases and impact of various flow governing parameters are discussed in detail. The established results are compared with earlier results and are comparable.

References

1.
Sakiadis
,
B. C.
,
1961
, “
Boundary Layer Behavior on Continuous Solid Surface: II. The Boundary Layer on a Continuous Flat Surface
,”
J. Am. Inst. Chem. Eng. (AICHE)
,
7
(
2
), pp.
221
225
.10.1002/aic.690070211
2.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
J. Appl. Math. Phys. (ZAMP)
,
21
(
4
), pp.
645
647
.10.1007/BF01587695
3.
Pavlov
,
K. B.
,
1974
, “
Magnetohydrodynamic Flow of an Incompressible Viscous Fluid Caused by Deformation of a Plane Surface
,”
Magnitnaya Gidrodinamika
,
4
(
1
), pp.
146
147
.http://mhd.sal.lv/Download/mydownload.php?ed=p&vol=10&nr=4&an=23&p1=146&p2=507
4.
Fadzilah
,
M.
,
Nazar
,
R.
,
Norihan
,
M.
, and
Pop
,
I.
,
2011
, “
MHD Boundary-Layer Flow and Heat Transfer Over a Stretching Sheet With Induced Magnetic Field
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
47
(
2
), pp.
155
162
.10.1007/s00231-010-0693-4
5.
Sachdev
,
P. L.
,
Bujurke
,
N. M.
, and
Awati
,
V. B.
,
2005
, “
Boundary Value Problems for Third Order Nonlinear Ordinary Differential Equations
,”
Stud. Appl. Math.
,
115
(
3
), pp.
303
318
.10.1111/j.1467-9590.2005.00310.x
6.
Kudenatti
,
R. B.
,
Awati
,
V. B.
, and
Bujurke
,
N. M.
,
2011
, “
Approximate Analytical Solutions of a Class of Boundary Layer Equations Over a Nonlinear Stretching Surface
,”
Appl. Math. Comp.
,
218
(
6
), pp.
2952
2959
.10.1016/j.amc.2011.08.049
7.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME,
Vol. 66, pp.
99
105
.
8.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
3
), pp.
241
250
.10.1115/1.2150834
9.
Ibrahim
,
W.
, and
Shanker
,
B.
,
2012
, “
Boundary-Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate With Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081203
.10.1115/1.4007075
10.
Khan
,
W. A.
, and
Gorla
,
R. S. R.
,
2012
, “
Heat and Mass Transfer in Power-Law Nanofluid Over a Non-Isothermal Stretching Wall With Convective Boundary Condition
,”
ASME J. Heat Mass Transfer Trans. ASME
,
134
(
11
), p.
112001
.10.1115/1.4007138
11.
Awati
,
V. B.
, and
Mahesh Kumar
,
N.
,
2021
, “
Analysis of Forced Convection Boundary Layer Flow and Heat Transfer Past a Semi-Infinite Static and Moving Flat Plate Using Nanofluids-by Haar Wavelets
,”
J. Nanofluids
,
10
(
1
), pp.
106
117
.10.1166/jon.2021.1771
12.
Clenshaw
,
C. W.
, and
Norton
,
H. J.
,
1963
, “
The Solution of Nonlinear Ordinary Differential Equations in Chebyshev Series
,”
Comput. J.
,
6
(
1
), pp.
88
92
.10.1093/comjnl/6.1.88
13.
Chen
,
C. F.
, and
Hsiao
,
C.
,
1997
, “
Haar Wavelet Method for Solving Lumped and Distributed-Parameter Systems
,”
IEE Proc. Control Theory Appl.
,
144
(
1
), pp.
87
94
.10.1049/ip-cta:19970702
14.
Dubeau
,
F.
,
Elmejdani
,
S.
, and
Ksantini
,
R.
,
2004
, “
Non-Uniform Haar Wavelets
,”
Appl. Math. Comp.
,
159
(
3
), pp.
675
693
.10.1016/j.amc.2003.09.021
15.
Boyd
,
J. P.
,
2000
,
Chebyshev and Fourier Spectral Methods
,
Dover Publications Inc
.,
New York
.
16.
Akyüz
,
A.
, and
Sezer
,
M.
,
2003
, “
Chebyshev Polynomial Solutions of Systems of High-Order Linear Differential Equations With Variable Coefficients
,”
Appl. Math. Comp.
,
144
(
2–3
), pp.
237
247
.10.1016/S0096-3003(02)00403-4
17.
Akyüz-Daşcıoğlu
,
A.
, and
Çerdi
,
H.
,
2011
, “
The Solution of High-Order Nonlinear Ordinary Differential Equations by Chebyshev Series
,”
Appl. Math. Comp.
,
217
(
12
), pp.
5658
5666
.10.1016/j.amc.2010.12.044
18.
Lepik
,
Ü.
,
2005
, “
Numerical Solution of Differential Equations Using Haar Wavelets
,”
Math. Comp. Simul.
,
68
(
2
), pp.
127
143
.10.1016/j.matcom.2004.10.005
19.
Majak
,
J.
,
Shvartsman
,
B. S.
,
Kirs
,
M.
,
Pohlak
,
M.
, and
Herranen
,
H.
,
2015
, “
Convergence Theorem for the Haar Wavelet Based Discretization Method
,”
Compos. Struct.
,
126
, pp.
227
232
.10.1016/j.compstruct.2015.02.050
20.
Awati
,
V. B.
,
Goravar
,
A.
,
Kumar N
,
M.
, and
Chamkha
,
A. J.
,
2023
, “
Scrutinisation of Chebyshev Collocation Method for Mass Transfer on a Continuous Flat Plate Moving in Parallel to a Free Stream in the Presence of a Chemical Reaction
,”
Int. J. Ambient Energy
,
44
(
1
), pp.
390
398
.10.1080/01430750.2022.2127893
21.
Awati
,
V. B.
,
Goravar
,
A.
, and
Wakif
,
A.
,
2022
, “
Analysis of Unsteady Boundary Layer Flow of Nanofluids With Heat Transfer Over a Permeable Stretching/Shrinking Sheet Via a Shifted Chebyshev Collocation Method
,”
Waves Random Complex Media
, epub, pp.
1
27
.10.1080/17455030.2022.2157515
22.
Ibrahim
,
W.
, and
Shanker
,
B.
,
2014
, “
Magnetohydrodynamic Boundary Layer Flow and Heat Transfer of a Nanofluid Over Non-Isothermal Stretching
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
5
), p.
051701
.10.1115/1.4026118
23.
Öztürk
,
Y.
,
2018
, “
Solution for the System of Lane–Emden Type Equations Using Chebyshev Polynomials
,”
Mathematics
,
6
(
10
), p.
181
.10.3390/math6100181
You do not currently have access to this content.