Abstract

Early detection is the most effective defense against breast cancer. Mammography is a well-established X-ray-based technique that is used for annual or biennial screening of women above age of 40. Since the dense breast tissue sometimes obscures the cancer in an X-ray image, about 10% of screened women are recalled and undergo additional adjunctive modalities, such as ultrasound, digital breast tomosynthesis, or magnetic resonance imaging. These modalities have drawbacks such as additional radiation dosage, overdiagnosis, and high cost. A new concurrent multispectral imaging approach was recently presented to eliminate the high recall rates by utilizing the breast surface temperature data with an inverse physics-informed neural network algorithm. This method utilizes the bioheat transfer modeling as the governing physics equations and conducted inverse heat transfer modeling using infrared temperatures to predict the presence of a tumor heat source. Validation of the predicted tumor size and location was conducted on a biopsy-proven breast cancer patient using infrared temperature data captured of the breast surface and pathology reports. A regression analysis between the predicted temperatures and infrared temperatures showed a coefficient of determination of 0.98. The absolute error in the predicted tumor size was 0.4 cm and the maximum absolute error in tumor location was 0.3 cm. The proposed approach shows promising results and performance. However, additional testing with more patients is required to quantify the standard deviation in the prediction and establish the sensitivity and specificity of the machine learning technique.

References

1.
Ahmad
,
A.
, ed.,
2019
,
Breast Cancer Metastasis and Drug Resistance: Challenges and Progress
,
Springer
,
Cham, Switzerland
.
2.
American Cancer Society
,
2022
, “
Cancer Facts & Figures
,”
American Cancer Society
,
Atlanta , GA
, accessed June 20, 2023, https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html
3.
Shafiq
,
A.
,
Çolak
,
A. B.
,
Sindhu
,
T. N.
,
Lone
,
S. A.
, and
Abushal
,
T. A.
,
2023
, “
Modeling and Survival Exploration of Breast Carcinoma: A Statistical, Maximum Likelihood Estimation, and Artificial Neural Network Perspective
,”
Artif. Intell. Life Sci.
,
4
, p.
100082
.10.1016/j.ailsci.2023.100082
4.
Narod
,
S. A.
,
Iqbal
,
J.
, and
Miller
,
A. B.
,
2015
, “
Why Have Breast Cancer Mortality Rates Declined?
,”
J. Cancer Policy
,
5
, pp.
8
17
.10.1016/j.jcpo.2015.03.002
5.
Grabler
,
P.
,
Sighoko
,
D.
,
Wang
,
L.
,
Allgood
,
K.
, and
Ansell
,
D.
,
2017
, “
Recall and Cancer Detection Rates for Screening Mammography: Finding the Sweet Spot
,”
Am. J. Roentgenol.
,
208
(
1
), pp.
208
213
.10.2214/AJR.15.15987
6.
Lehman
,
C. D.
,
Arao
,
R. F.
,
Sprague
,
B. L.
,
Lee
,
J. M.
,
Buist
,
D. S. M.
,
Kerlikowske
,
K.
,
Henderson
,
L. M.
, et al.,
2017
, “
National Performance Benchmarks for Modern Screening Digital Mammography: Update From the Breast Cancer Surveillance Consortium
,”
Radiology
,
283
(
1
), pp.
49
58
.10.1148/radiol.2016161174
7.
Nelson
,
H. D.
,
Pappas
,
M.
,
Cantor
,
A.
,
Griffin
,
J.
,
Daeges
,
M.
, and
Humphrey
,
L.
,
2016
, “
Harms of Breast Cancer Screening: Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation
,”
Ann. Intern. Med.
,
164
(
4
), pp.
256
267
.10.7326/M15-0970
8.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2020
, “
An Inverse Heat Transfer Approach for Patient-Specific Breast Cancer Detection and Tumor Localization Using Surface Thermal Images in the Prone Position
,”
Infrared Phys. Technol.
,
105
, p.
103202
.10.1016/j.infrared.2020.103202
9.
Sritharan
,
N.
,
Gutierrez
,
C.
,
Perez-Raya
,
I.
,
Gonzalez-Hernandez
,
J.-L.
,
Owens
,
A.
,
Dabydeen
,
D.
,
Medeiros
,
L.
,
Kandlikar
,
S. G.
, and
Phatak
,
P.
,
2023
, “
Abstract PO1-07-12: Inverse Modeling With Surface Temperature Accurately Detects the Presence of Breast Cancer
,”
Cancer Res.
,
84
(
9_Supplement
), p.
PO1-07-12
.10.1158/1538-7445.SABCS23-PO1-07-12
10.
Gutierrez
,
C.
,
Owens
,
A.
,
Medeiros
,
L.
,
Dabydeen
,
D.
,
Sritharan
,
N.
,
Phatak
,
P.
, and
Kandlikar
,
S. G.
,
2024
, “
Breast Cancer Detection Using Enhanced IRI-Numerical Engine and Inverse Heat Transfer Modeling: Model Description and Clinical Validation
,”
Sci. Rep.
,
14
(
1
), p.
3316
.10.1038/s41598-024-53856-w
11.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p.
060801
.10.1115/1.4050542
12.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.10.1115/1.4053800
13.
Jagtap
,
N. V.
,
Mudunuru
,
M. K.
, and
Nakshatrala
,
K. B.
,
2023
, “
CoolPINNs: A Physics-Informed Neural Network Modeling of Active Cooling in Vascular Systems
,”
Appl. Math. Modell.
,
122
, pp.
265
287
.10.1016/j.apm.2023.04.020
14.
Zhang
,
B.
,
Wu
,
G.
,
Gu
,
Y.
,
Wang
,
X.
, and
Wang
,
F.
,
2022
, “
Multi-Domain Physics-Informed Neural Network for Solving Forward and Inverse Problems of Steady-State Heat Conduction in Multilayer Media
,”
Phys. Fluids
,
34
(
11
), p.
116116
.10.1063/5.0116038
15.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2023
, “
Thermal Modeling of Patient-Specific Breast Cancer With Physics-Based Artificial Intelligence
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
3
), p.
031201
.10.1115/1.4055347
16.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What's Next
,”
J. Sci. Comput.
,
92
(
3
), p.
88
.10.1007/s10915-022-01939-z
17.
Kollmannsberger
,
S.
,
D'Angella
,
D.
,
Jokeit
,
M.
, and
Herrmann
,
L.
,
2021
,
Deep Learning in Computational Mechanics, An Introductory Course
,
Springer International Publishing
,
Cham
.
18.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Inferring Solutions of Differential Equations Using Noisy Multi-Fidelity Data
,”
J. Comput. Phys.
,
335
, pp.
736
746
.10.1016/j.jcp.2017.01.060
19.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Machine Learning of Linear Differential Equations Using Gaussian Processes
,”
J. Comput. Phys.
,
348
, pp.
683
693
.10.1016/j.jcp.2017.07.050
20.
Raissi
,
M.
,
Ramezani
,
N.
, and
Seshaiyer
,
P.
,
2019
, “
On Parameter Estimation Approaches for Predicting Disease Transmission through Optimization, Deep Learning and Statistical Inference Methods
,”
Lett. Biomath.
, 6(2), pp.
1
26
10.1080/23737867.2019.1676172.
21.
Raissi
,
M.
, and
Karniadakis
,
G. E.
,
2018
, “
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
357, pp.
125
141
.10.1016/j.jcp.2017.11.039
22.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2018
, “
Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations
,”
SIAM J. Sci. Comput.
,
40
(
1
), pp.
A172
A198
.10.1137/17M1120762
23.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.10.1038/s42254-021-00314-5
24.
Dissanayake
,
M. W. M. G.
, and
Phan-Thien
,
N.
,
1994
, “
Neural-Network-Based Approximations for Solving Partial Differential Equations
,”
Commun. Numer. Methods Eng.
,
10
(
3
), pp.
195
201
.10.1002/cnm.1640100303
25.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Networks
,
9
(
5
), pp.
987
1000
.10.1109/72.712178
26.
Lagaris
,
I. E.
,
Likas
,
A. C.
, and
Papageorgiou
,
D. G.
,
2000
, “
Neural-Network Methods for Boundary Value Problems With Irregular Boundaries
,”
IEEE Trans. Neural Networks
,
11
(
5
), pp.
1041
1049
.10.1109/72.870037
27.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
The MIT Press
,
Cambridge, MA
.
28.
Dhall
,
D.
,
Kaur
,
R.
, and
Juneja
,
M.
,
2020
, “
Machine Learning: A Review of the Algorithms and Its Applications
,”
Proceedings of ICRIC 2019
, edited by
P. K.
Singh
,
A. K.
Kar
,
Y.
Singh
,
M. H.
Kolekar
, and
S.
Tanwar
(
Springer International Publishing
,
Cham
), pp.
47
63
.
29.
Dong
,
S.
,
Wang
,
P.
, and
Abbas
,
K.
,
2021
, “
A Survey on Deep Learning and Its Applications
,”
Comput. Sci. Rev.
,
40
, p.
100379
.10.1016/j.cosrev.2021.100379
30.
Cai
,
S.
,
Mao
,
Z.
,
Wang
,
Z.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review
,”
Acta Mech. Sin.
,
37
(
12
), pp.
1727
1738
.10.1007/s10409-021-01148-1
31.
Pashaei Kalajahi
,
A.
,
Perez-Raya
,
I.
, and
D'Souza
,
R. M.
,
2022
, “
Physics Informed Deep Neural Net Inverse Modeling for Estimating Model Parameters in Permeable Porous Media Flows
,”
ASME J. Fluids Eng.
,
144
(
6
), p.
061102
.10.1115/1.4053549
32.
Jambunathan
,
K.
,
Hartle
,
S. L.
,
Ashforth-Frost
,
S.
, and
Fontama
,
V. N.
,
1996
, “
Evaluating Convective Heat Transfer Coefficients Using Neural Networks
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2329
2332
.10.1016/0017-9310(95)00332-0
33.
Aliakbari
,
M.
,
Mahmoudi
,
M.
,
Vadasz
,
P.
, and
Arzani
,
A.
,
2022
, “
Predicting High-Fidelity Multiphysics Data From Low-Fidelity Fluid Flow and Transport Solvers Using Physics-Informed Neural Networks
,”
Int. J. Heat Fluid Flow
,
96
, p.
109002
.10.1016/j.ijheatfluidflow.2022.109002
34.
Wang
,
T.
,
Wang
,
Z.
,
Huang
,
Z.
, and
Xi
,
G.
,
2022
, “
Multi-Domain Physics-Informed Neural Network for Solving Heat Conduction and Conjugate Natural Convection With Discontinuity of Temperature Gradient on Interface
,”
Sci. China Technol. Sci.
,
65
(
10
), pp.
2442
2461
.10.1007/s11431-022-2118-9
35.
Go
,
M.-S.
,
Lim
,
J. H.
, and
Lee
,
S.
,
2023
, “
Physics-Informed Neural Network-Based Surrogate Model for a Virtual Thermal Sensor With Real-Time Simulation
,”
Int. J. Heat Mass Transfer
,
214
, p.
124392
.10.1016/j.ijheatmasstransfer.2023.124392
36.
Pratama
,
D. A.
,
Bakar
,
M. A.
,
Ibrahim
,
N. F.
,
Idris
,
R.
, and
Mohamed
,
N.
,
2023
, “
Physical Restriction Neural Networks With Restarting Strategy for Solving Mathematical Model of Thermal Heat Equation for Early Diagnose Breast Cancer
,”
Results Appl. Math.
,
19
, p.
100384
.10.1016/j.rinam.2023.100384
37.
Waring
,
J.
,
Lindvall
,
C.
, and
Umeton
,
R.
,
2020
, “
Automated Machine Learning: Review of the State-of-the-Art and Opportunities for Healthcare
,”
Artif. Intell. Med.
,
104
, p.
101822
.10.1016/j.artmed.2020.101822
38.
Arzani
,
A.
,
Wang
,
J.-X.
,
Sacks
,
M. S.
, and
Shadden
,
S. C.
,
2022
, “
Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond
,”
Ann. Biomed. Eng.
,
50
(
6
), pp.
615
627
.10.1007/s10439-022-02967-4
39.
Nolte
,
D.
, and
Bertoglio
,
C.
,
2022
, “
Inverse Problems in Blood Flow Modeling: A Review
,”
Int. J. Numer. Methods Biomed. Eng.
,
38
(
8
), p.
e3613
.10.1002/cnm.3613
40.
Fathi
,
M. F.
,
Perez-Raya
,
I.
,
Baghaie
,
A.
,
Berg
,
P.
,
Janiga
,
G.
,
Arzani
,
A.
, and
D'Souza
,
R. M.
,
2020
, “
Super-Resolution and Denoising of 4D-Flow MRI Using Physics-Informed Deep Neural Nets
,”
Comput. Methods Programs Biomed.
,
197
, p.
105729
.10.1016/j.cmpb.2020.105729
41.
Habibi
,
M.
,
D'Souza
,
R. M.
,
Dawson
,
S. T. M.
, and
Arzani
,
A.
,
2021
, “
Integrating Multi-Fidelity Blood Flow Data With Reduced-Order Data Assimilation
,”
Comput. Biol. Med.
,
135
, p.
104566
.10.1016/j.compbiomed.2021.104566
42.
Moser
,
P.
,
Fenz
,
W.
,
Thumfart
,
S.
,
Ganitzer
,
I.
, and
Giretzlehner
,
M.
,
2023
, “
Modeling of 3D Blood Flows With Physics-Informed Neural Networks: Comparison of Network Architectures
,”
Fluids
,
8
(
2
), p.
46
.10.3390/fluids8020046
43.
Perez-Raya
,
I.
,
Fathi
,
M. F.
,
Baghaie
,
A.
,
Sacho
,
R. H.
,
Koch
,
K. M.
, and
D'Souza
,
R. M.
,
2020
, “
Towards Multi-Modal Data Fusion for Super-Resolution and Denoising of 4D-Flow MRI
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
9
), p.
e3381
.10.1002/cnm.3381
44.
Zhang
,
X.
,
Mao
,
B.
,
Che
,
Y.
,
Kang
,
J.
,
Luo
,
M.
,
Qiao
,
A.
,
Liu
,
Y.
, et al.,
2023
, “
Physics-Informed Neural Networks (PINNs) for 4D Hemodynamics Prediction: An Investigation of Optimal Framework Based on Vascular Morphology
,”
Comput. Biol. Med.
, 164, p.
107287
.10.1016/j.compbiomed.2023.107287
45.
Sel
,
K.
,
Mohammadi
,
A.
,
Pettigrew
,
R. I.
, and
Jafari
,
R.
,
2023
, “
Physics-Informed Neural Networks for Modeling Physiological Time Series for Cuffless Blood Pressure Estimation
,”
Npj Digit. Med.
,
6
(
1
), pp.
1
15
.10.1038/s41746-023-00853-4
46.
Sarabian
,
M.
,
Babaee
,
H.
, and
Laksari
,
K.
,
2022
, “
Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging
,”
IEEE Trans. Med. Imaging
,
41
(
9
), pp.
2285
2303
.10.1109/TMI.2022.3161653
47.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
48.
Mashekova
,
A.
,
Zhao
,
Y.
,
Ng
,
E. Y. K.
,
Zarikas
,
V.
,
Fok
,
S. C.
, and
Mukhmetov
,
O.
,
2022
, “
Early Detection of the Breast Cancer Using Infrared Technology – a Comprehensive Review
,”
Therm. Sci. Eng. Prog.
,
27
, p.
101142
.10.1016/j.tsep.2021.101142
49.
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2018
, “
Generation and Thermal Simulation of a Digital Model of the Female Breast in Prone Position
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
4
), p.
041006
.10.1115/1.4041421
50.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2019
, “
Technology, Application and Potential of Dynamic Breast Thermography for the Detection of Breast Cancer
,”
Int. J. Heat Mass Transfer
,
131
, pp.
558
573
.10.1016/j.ijheatmasstransfer.2018.11.089
51.
Kandlikar
,
S. G.
,
Perez-Raya
,
I.
,
Raghupathi
,
P. A.
,
Gonzalez-Hernandez
,
J.-L.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2017
, “
Infrared Imaging Technology for Breast Cancer Detection – Current Status, Protocols and New Directions
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2303
2320
.10.1016/j.ijheatmasstransfer.2017.01.086
52.
Lozano
,
A.
,
Hayes
,
J. C.
,
Compton
,
L. M.
,
Azarnoosh
,
J.
, and
Hassanipour
,
F.
,
2020
, “
Determining the Thermal Characteristics of Breast Cancer Based on High-Resolution Infrared Imaging, 3D Breast Scans, and Magnetic Resonance Imaging
,”
Sci. Rep.
,
10
(
1
), p.
10105
.10.1038/s41598-020-66926-6
53.
Gautherie
,
M.
,
1980
, “
Thermopathology of Breast Cancer: Measurement and Analysis of In Vivo Temperature and Blood Flow
,”
Ann. N. Y. Acad. Sci.
,
335
(
1
), pp.
383
415
.10.1111/j.1749-6632.1980.tb50764.x
54.
Duck
,
F. A.
,
2013
,
Physical Properties of Tissues: A Comprehensive Reference Book
,
Academic Press
,
London, UK
.
55.
Gershenson
,
M.
, and
Gershenson
,
J.
,
2023
, “
Dynamic Vascular Imaging Using Active Breast Thermography
,”
Sensors
,
23
(
6
), p.
3012
.10.3390/s23063012
You do not currently have access to this content.