Abstract

This paper reports a film-cooling effectiveness experiment on a turbine blade platform that combines two film hole shapes with three layouts. A linear cascade using the pressure-sensitive paint (PSP) technique was employed to measure the adiabatic film effectiveness and discharge coefficients. Three film hole layouts, including two double-row layouts and one dispersed layout, were designed based on the platform configurations. One double-row layout arranges both rows of holes on the pressure side. Another double-row layout arranges one row on the pressure side and one row on the suction side. The dispersed layout was designed with streamwise multirows using the same number of holes. A fan-shaped hole and a diffusion slot hole were tested and compared. The experiments were conducted at a mainstream Reynolds number of 7 × 105, a mainstream turbulence intensity of 3.6%, and a coolant-to-mainstream density ratio of 1.5. The blowing ratio ranged from 0.5 to 2.5. The results demonstrated that regardless of the hole shape, the dispersed layout performed better than the two double-row layouts. However, the effects of the layout on the film effectiveness and discharge coefficients are smaller for the diffusion slot hole. In the three layouts, the film effectiveness of the diffusion slot holes is remarkably greater than that of the fan-shaped holes, and the superiority increases as the blowing ratio increases. In contrast, the superiority of the diffusion slot hole in double-row layouts surpasses that of a dispersed layout.

References

1.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Heat Transfer Gas Turbine Syst.
,
934
(
2001
), pp.
27
36
.10.1111/j.1749-6632.2001.tb05840.x
2.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
3.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
4.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
,
Morris
,
M. C.
,
Yelavkar
,
V.
, and
Bilwani
,
R.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,”
ASME
Paper No. GT2014-26373.10.1115/GT2014-26373
5.
Satta
,
F.
, and
Tanda
,
G.
,
2015
, “
Effect of Discrete-Hole Arrangement on Film-Cooling Effectiveness for the Endwall of a Turbine Blade Cascade
,”
Appl. Therm. Eng.
,
91
(
2015
), pp.
507
514
.10.1016/j.applthermaleng.2015.07.082
6.
Liu
,
J.
,
Du
,
W.
,
Zhang
,
G.
,
Hussain
,
S.
,
Wang
,
L.
,
Xie
,
G.
, and
Sundén
,
B.
,
2020
, “
Design of Full-Scale Endwall Film Cooling of a Turbine Vane
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
2
), p.
022201
.10.1115/1.4045069
7.
Su
,
H.
,
Pu
,
J.
,
Wang
,
J. H.
,
Yuan
,
R. M.
,
Luan
,
Y. X.
, and
Kang
,
B. P.
,
2018
, “
An Experimental Investigation of Cooling Characteristics at a Vane End-Wall With a Locally Enhanced Hole-Layout
,”
Exp. Therm. Fluid Sci.
,
96
(
2018
), pp.
137
145
.10.1016/j.expthermflusci.2018.02.031
8.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
,
121
(
4
), pp.
772
780
.10.1115/1.2836731
9.
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Film Cooling Effectiveness Distribution of Cylindrical Hole Injections at Different Locations on a Vane Endwall
,”
Int. J. Heat Mass Transfer
,
90
(
2015
), pp.
1
14
.10.1016/j.ijheatmasstransfer.2015.06.026
10.
Yang
,
X.
,
Liu
,
Z.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z.
, and
Simon
,
T. W.
,
2020
, “
Comparisons of Endwall Overall Effectiveness From Two Film Hole Distribution Patterns at Low and High Exit Mach Numbers
,”
ASME J. Turbomach.
,
142
(
10
), p.
101007
.10.1115/1.4047809
11.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.10.1115/1.1811099
12.
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
(
2016
), pp.
348
359
.10.1016/j.ijheatmasstransfer.2016.06.047
13.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
(
4
), p.
041001
.10.1115/1.3142860
14.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
,
130
(
3
), p.
031015
.10.1115/1.2777186
15.
Yu
,
Z. Q.
,
Liu
,
J. J.
,
Li
,
C.
,
An
,
B. T.
, and
Xu
,
G. Y.
,
2021
, “
Experimental Investigation of Film Cooling Performance on Blade Endwall With Diffusion Slot Holes and Stator–Rotor Purge Flow
,”
ASME J. Turbomach.
,
143
(
5
), p.
051009
.10.1115/1.4050120
16.
Gao
,
Z. H.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.10.1115/1.3068327
17.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.10.1115/1.2098788
18.
Colban
,
W.
, and
Thole
,
K.
,
2007
, “
Influence of Hole Shape on the Performance of a Turbine Vane Endwall Film-Cooling Scheme
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
341
356
.10.1016/j.ijheatfluidflow.2006.05.002
19.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.10.1115/1.2720493
20.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator–Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.10.1115/1.4026964
21.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
139
(
3
), p.
031012
.10.1115/1.4034985
22.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2018
, “
Turbine Blade Platform Film Cooling With Fan-Shaped Holes Under Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
140
(
1
), p.
011006
.10.1115/1.4038150
23.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2009
, “
Film-Cooling Flowfields With Trenched Holes on an Endwall
,”
ASME J. Turbomach.
,
131
(
4
), p.
041007
.10.1115/1.3068316
24.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Effects of Trenched Holes on Film Cooling of a Contoured Endwall Nozzle Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041009
.10.1115/1.4003658
25.
Yang
,
X.
,
Zhao
,
Q.
, and
Feng
,
Z. P.
,
2022
, “
Experimental Evaluation of Cooling Effectiveness From Novel Film Holes Over Turbine Endwalls With Inlet Swirl
,”
Int. J. Therm. Sci.
,
174
(
2022
), p.
107434
.10.1016/j.ijthermalsci.2021.107434
26.
Li
,
J. J.
,
Yan
,
X.
,
He
,
K.
, and
Goldstein
,
R. J.
,
2021
, “
Implementation of Rectangular Vortex Generator Pairs to Improve Film Cooling Effectiveness on Transonic Rotor Blade Endwall
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091022
.10.1115/1.4050917
27.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
.10.1115/1.2752184
28.
Rezasoltani
,
M.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2014
, “
Experimental Investigation of the Effect of Purge Flow on Film Cooling Effectiveness on a Rotating Turbine With Nonaxisymmetric End Wall Contouring
,”
ASME J. Turbomach.
,
136
(
9
), p.
091009
.10.1115/1.4027196
29.
Song
,
L. M.
,
Zhu
,
P. Y.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2017
, “
Effect of Purge Flow on Endwall Flow and Heat Transfer Characteristics of a Gas Turbine Blade
,”
Appl. Therm. Eng.
,
110
(
2017
), pp.
504
520
.10.1016/j.applthermaleng.2016.08.172
30.
Wright
,
L. M.
,
Gao
,
Z. H.
,
Yang
,
H. T.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
7
), p.
071702
.10.1115/1.2907440
31.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Purge Flow and Interface Gap Geometry Influence on the Aero-Thermal Performance of a Rotor Blade Cascade
,”
Int. J. Heat Fluid Flow
,
44
(
2013
), pp.
563
575
.10.1016/j.ijheatfluidflow.2013.08.012
32.
Li
,
S. J.
,
Lee
,
J.
,
Han
,
J. C.
,
Zhang
,
L. Z.
, and
Moon
,
H. K.
,
2016
, “
Influence of Mainstream Turbulence on Turbine Blade Platform Cooling From Simulated Swirl Purge Flow
,”
Appl. Therm. Eng.
,
101
(
2016
), pp.
678
685
.10.1016/j.applthermaleng.2016.01.056
33.
Ranson
,
W. W.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,”
ASME J. Turbomach.
,
127
(
3
), pp.
609
618
.10.1115/1.1929809
34.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2017
, “
Heat Transfer and Film Cooling on a Contoured Blade Endwall With Platform Gap Leakage
,”
ASME J. Turbomach.
,
139
(
5
), p.
051002
.10.1115/1.4035202
35.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.10.1115/1.4037909
36.
Zhang
,
K. Y.
,
Li
,
Z. G.
, and
Li
,
J.
,
2021
, “
Turbine Endwall Cooling and Heat Transfer Characteristics Under Slashface Leakage Interacted With Nearby Discrete-Hole Injections
,”
Int. J. Therm. Sci.
,
170
(
2021
), p.
107167
.10.1016/j.ijthermalsci.2021.107167
37.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2017
, “
Geometrical Parameter Effects on Film Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.10.1115/1.4036007
38.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2018
, “
Effects of Inclination Angle, Orientation Angle, and Hole Length on Film Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
140
(
7
), p.
071003
.10.1115/1.4040101
39.
Hu
,
J. J.
, and
An
,
B. T.
,
2023
, “
Film Cooling Effectiveness on Pressure Surface and Suction Surface of Turbine Guide Vane With Diffusion Slot Holes
,”
ASME J. Turbomach.
,
145
(
10
), p.
101007
.10.1115/1.4062805
40.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
41.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Tubomach.
,
120
(
3
), pp.
557
563
.10.1115/1.2841753
42.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.10.1016/S0142-727X(99)00017-X
43.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.10.5098/hmt.v1.1.3001
44.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.10.1115/1.4032674
You do not currently have access to this content.