Abstract

This paper reports the fully developed flow and heat transfer in the horizontal channel filled with fluid saturated porous medium. The flow is derived from the combined impact of external pressure gradient and thermal diffusion buoyancy force. The Brinkmann-extended Darcy model describes the behavior of the two-dimensional flow governing equations. The coupled governing equations are solved numerically using the alternate direction implicit (ADI) method. The influence of physical parameters, Reynolds number (Re), Darcy number (Da), and Grashof number (Gr), on the dynamics of flow and heat transfer mechanism is investigated. From our numerical investigation, it is found that the flow structure is either uniform or recirculation and depends on Da, Gr, as well as Re. For Re = 10, the flow structure is multicellular and flow oscillation, whereas for Re = 100 the flow structure is unicellular. The size and position of flow circulation are changed significantly for relatively large media permeability. For Ri10, the linear contours in the profile of temperature distribution are found via convection as well as conduction mode, whereas curvature contours in the same are found via convection mode only which is the consequence of natural convection dominant. For Ri = 1, the curvature contour in the profile of temperature distribution is found by mixed convection only.

References

1.
Sharma
,
A. K.
,
Khandelwal
,
M. K.
, and
Bera
,
P.
,
2018
, “
Finite Amplitude Analysis of Non-Isothermal Parallel Low in a Vertical Channel Filled With a Highly Permeable Porous Medium
,”
J. Fluid Mech.
,
857
, pp.
469
507
.10.1017/jfm.2018.745
2.
Chandra
,
H.
, and
Bera
,
P.
,
2023
, “
Magneto-Convection in an Anisotropic Porous Cavity Due to Nonuniform Heat Flux at Bottom Wall
,”
Numer. Heat Transfer, Part A: Appl.
,
84
(
1
), pp.
1
15
.10.1080/10407782.2022.2104590
3.
Xu
,
Z. G.
, and
Zhao
,
C. Y.
,
2016
, “
Enhanced Boiling Heat Transfer by Gradient Porous Metals in Saturated Pure Water and Surfactant Solutions
,”
Appl. Therm. Eng.
,
100
, pp.
68
77
.10.1016/j.applthermaleng.2016.02.016
4.
Hsu
,
C. J.
,
1965
, “
Heat Transfer in a Round Tube With Sinusoidal Wall Heat Flux Distribution
,”
AIChE J.
,
11
(
4
), pp.
690
695
.10.1002/aic.690110423
5.
Fichot
,
F.
,
Duval
,
F.
,
Tregoures
,
N.
,
Bechaud
,
C.
, and
Quintard
,
M.
,
2006
, “
The Impact of Thermal Nonequilibrium and Large-Scale 2D/3D Effects on Debris Bed Reflooding and Coolability
,”
Nucl. Eng. Des.
,
236
(
19–21
), pp.
2144
2163
.10.1016/j.nucengdes.2006.03.059
6.
Damm
,
D. L.
, and
Fedorov
,
A. G.
,
2006
, “
Local Thermal Non-Equilibrium Effects in Porous Electrodes of the Hydrogen-Fueled SOFC
,”
J. Power Sources
,
159
(
2
), pp.
1153
1157
.10.1016/j.jpowsour.2005.12.008
7.
Lefebvre
,
L. P.
,
Banhart
,
J.
, and
Dunand
,
D. C.
,
2008
, “
Porous Metals and Metallic Foams: Current Status and Recent Developments
,”
Adv. Eng. Mater.
,
10
(
9
), pp.
775
787
.10.1002/adem.200800241
8.
Wooding
,
R. A.
,
1976
, “
Large Scale Geothermal Field Parameters and Convection Theory
,”
Second Workshop Geothermal Reservoir Engineering
,
Stanford University
,
Stanford, CA
, Dec. 1–3, pp.
339
345
.
9.
Comini
,
G.
,
Manzan
,
M.
, and
Nonino
,
C.
,
1994
, “
Finite Element Solution of the Streamfunction-Vorticity Equations for Incompressible Two-Dimensional Flows
,”
Int. J. Numer. Methods Fluids
,
19
, pp.
513
525
.10.1002/fld.1650190605
10.
Comini
,
G.
,
Cortella
,
G.
, and
Manzan
,
M.
,
1995
, “
A Streamfunction-Vorticity-Based Finite-Element Formulation for Laminar-Convection Problems
,”
Numer. Heat Transfer, Part B: Fundam.
,
28
(
1
), pp.
1
22
.10.1080/10407799508928818
11.
Comini
,
G.
,
Manzan
,
M.
, and
Cortella
,
G.
,
1997
, “
Open Boundary Conditions for the Streamfunction-Vorticity Formulation of Unsteady Laminar Condition
,”
Numer. Heat Transfer, Part B: Fundam.
,
31
(
2
), pp.
217
234
.10.1080/10407799708915106
12.
Basha
,
M.
,
Sidik
,
N. A. C.
, and
Beriache
,
M.
,
2017
, “
Numerical Simulation of Fluid Flow and Heat Transfer in Rotating Channels Using Parallel Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
115
, pp.
158
168
.10.1016/j.ijheatmasstransfer.2017.07.044
13.
Javaherdeh
,
K.
,
Karimi
,
H.
, and
Azarbarzin
,
T.
,
2021
, “
Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer in a Micro Channel With Heat Sources Located on the Walls
,”
Superlattices Microstruct.
,
160
, p.
107069
.10.1016/j.spmi.2021.107069
14.
Li
,
Y.
,
Wang
,
J.
,
Xie
,
G.
, and
Sunden
,
B.
,
2021
, “
Effect of Thermal Pyrolysis on Heat Transfer and Upward Flow Characteristics in a Rectangular Channel Using Endothermic Hydrocarbon Fuel
,”
Chem. Eng. Sci.
,
244
, p.
116806
.10.1016/j.ces.2021.116806
15.
Li
,
X.
,
Zhang
,
S.
,
Zuo
,
J.
,
Wei
,
J.
,
Zhou
,
X.
, and
Bao
,
W.
,
2023
, “
Flow and Heat Transfer Characteristics of Supercritical Hydrogen in Unilateral Heated Channels With Micro-Ribs
,”
Appl. Therm. Eng.
,
221
, p.
119900
.10.1016/j.applthermaleng.2022.119900
16.
Kim
,
K.
, and
Yeom
,
T.
,
2023
, “
Numerical Study on Channel-Flow Convection Heat Transfer Enhancement With Piezoelectric Fans Under Various Operating Conditions
,”
Appl. Therm. Eng.
,
219
, p.
119674
.10.1016/j.applthermaleng.2022.119674
17.
Pallares
,
J.
,
Fabregat
,
A.
, and
Lei
,
C.
,
2023
, “
Direct Numerical Simulation of the Fully Developed Turbulent Free Convection Flow in an Asymmetrically Heated Vertical Channel
,”
Int. J. Therm. Sci.
,
191
, p.
108352
.10.1016/j.ijthermalsci.2023.108352
18.
Vafai
,
K.
, and
Sozen
,
M.
,
1990
, “
Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
, pp.
390
399
.10.1115/1.2910442
19.
Kaviany
,
M.
,
1991
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
20.
Rees
,
D. A. S.
,
Bassom
,
A.
, and
Siddheshwar
,
P. G.
,
2008
, “
Local Thermal Non-Equilibrium Effects Arising From the Injection of a Hot Fluid Into a Porous Medium
,”
J. Fluid Mech.
,
594
, pp.
379
398
.10.1017/S0022112007008890
21.
Chandra
,
H.
, and
Bera
,
P.
,
2024
, “
Local Thermal Nonequilibrium Perspective of Heat Transfer and Fluid Flow in a Slender Anisotropic Porous Cavity Due to Lateral Uniform Heat Flux
,”
Numer. Heat Transfer, Part A: Appl.
, pp.
1
27
.10.1080/10407782.2024.2305229
22.
Lai
,
F. C.
,
Prasad
,
V.
, and
Kulacki
,
F. A.
,
1988
, “
Aiding and Opposing Mixed Convection in a Vertical Porous Layer With a Finite Wall Heat Source
,”
Int. J. Heat Mass Transfer
,
31
(
5
), pp. 10
49
1061
.10.1016/0017-9310(88)90093-2
23.
Pop
,
I.
,
Rees
,
D. A. S.
, and
Egbers
,
C.
,
2004
, “
Mixed Convection Flow in a Narrow Vertical Duct Filled With a Porous Medium
,”
Int. J. Therm. Sci.
,
43
(
5
), pp.
489
498
.10.1016/j.ijthermalsci.2003.09.004
24.
Saeid
,
N. H.
,
2004
, “
Analysis of Mixed Convection in a Vertical Porous Layer Using Non-Equilibrium Model
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5619
5627
.10.1016/j.ijheatmasstransfer.2004.07.033
25.
Saeid
,
N. H.
, and
Pop
,
I.
,
2005
, “
Mixed Convection From Two Thermal Sources in a Vertical Porous Layer
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4150
4160
.10.1016/j.ijheatmasstransfer.2005.04.023
26.
Prasad
,
V.
,
Lai
,
F. C.
, and
Kulacki
,
F. A.
,
1988
, “
Mixed Convection in Horizontal Porous Layers Heated From Below
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
110
(
2
), pp.
395
402
.10.1115/1.3250498
27.
Lai
,
F. C.
, and
Kulacki
,
F. A.
,
1991
, “
Experimental Study of Free and Mixed Convection in Horizontal Porous Layers Locally Heated From Below
,”
Int. J. Heat Mass Transfer
,
34
(
2
), pp.
525
541
.10.1016/0017-9310(91)90271-F
28.
Lai
,
F. C.
, and
Kulacki
,
F. A.
,
1991
, “
Oscillatory Mixed Convection in Horizontal Porous Layers Locally Heated From Below
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
887
890
.10.1016/0017-9310(91)90134-Z
29.
Yokoyama
,
Y.
,
Kulacki
,
F. A.
, and
Mahajan
,
R. L.
,
1999
, “
Mixed Convection in a Horizontal Porous Duct With a Sudden Expansion and Local Heating From Below
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
3
), pp.
653
661
.10.1115/1.2826029
30.
Barletta
,
A.
,
2012
, “
Thermal Instability in a Horizontal Porous Channel With Horizontal Through Flow and Symmetric Wall Heat Fluxes
,”
Transp. Porous Media
,
92
(
2
), pp.
419
437
.10.1007/s11242-011-9910-y
31.
Cimpean
,
D. S.
, and
Pop
,
I.
,
2012
, “
Fully Developed Mixed Convection Flow of a Nanofluid Through an Inclined Channel Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
907
914
.10.1016/j.ijheatmasstransfer.2011.10.018
32.
Sphaier
,
L. A.
,
Barletta
,
A.
, and
Celli
,
M.
,
2015
, “
Unstable Mixed Convection in a Heated Inclined Porous Channel
,”
J. Fluid Mech.
,
778
, pp.
428
450
.10.1017/jfm.2015.394
33.
Hadim
,
A.
, and
Chen
,
G.
,
1994
, “
Non-Darcy Mixed Convection in a Vertical Porous Channel With Discrete Heat Sources at the Walls
,”
Int. Commun. Heat Mass Transfer
,
21
(
3
), pp.
377
387
.10.1016/0735-1933(94)90006-X
34.
Vafai
,
K.
, and
Kim
,
S. J.
,
1989
, “
Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
4
), pp.
1103
1106
.10.1115/1.3250779
35.
Degan
,
G.
, and
Vasseur
,
P.
,
2002
, “
Aiding Mixed Convection Through a Vertical Anisotropic Porous Channel With Oblique Principal Axes
,”
Int. J. Eng. Sci.
,
40
(
2
), pp.
193
209
.10.1016/S0020-7225(01)00012-X
36.
Umavathi
,
J. C.
,
Kumar
,
J. P.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2005
, “
Mixed Convection in a Vertical Porous Channel
,”
Transp. Porous Media
,
61
(
3
), pp.
315
335
.10.1007/s11242-005-0260-5
37.
Avramenko
,
A. A.
,
Kovetska
,
Y. Y.
,
Shevchuk
,
I. V.
,
Tyrinov
,
A. I.
, and
Shevchuk
,
V. I.
,
2018
, “
Mixed Convection in Vertical Flat and Circular Porous Microchannels
,”
Transp. Porous Media
,
124
(
3
), pp.
919
941
.10.1007/s11242-018-1104-4
38.
Kotresha
,
B.
,
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2020
, “
Numerical Simulations of Flow-Assisted Mixed Convection in a Vertical Channel Filled With High Porosity Metal Foams
,”
Heat Transfer Eng.
, 41(8), pp.
739
750
.10.1080/01457632.2018.1564208
39.
Khandelwal
,
M. K.
,
Sharma
,
A. K.
, and
Bera
,
P.
,
2021
, “
Instability of Mixed Convection in a Differentially Heated Channel Filled With Porous Medium: A Finite Amplitude Analysis
,”
Phys. Fluids
,
33
, p.
024109
.10.1063/5.0031243
40.
Degan
,
G.
,
Zohoun
,
S.
, and
Vasseur
,
P.
,
2002
, “
Forced Convection in Horizontal Porous Channels With Hydrodynamic Anisotropy
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3181
3188
.10.1016/S0017-9310(02)00032-7
41.
Wong
,
K. C.
, and
Saeid
,
N. H.
,
2009
, “
Numerical Study of Mixed Convection on Jet Impingement Cooling in a Horizontal Porous Layer Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
860
870
.10.1016/j.ijthermalsci.2008.06.004
42.
Barletta
,
A.
, and
Rees
,
D. A. S.
,
2019
, “
Unstable Mixed Convection Flow in a Horizontal Porous Channel With Uniform Wall Heat Flux
,”
Transp. Porous Media
,
129
(
1
), pp.
385
402
.10.1007/s11242-019-01294-y
43.
Li
,
Q.
, and
Hu
,
P.
,
2019
, “
Analytical Solutions of Fluid Flow and Heat Transfer in a Partial Porous Channel With Stress Jump and Continuity Interface Conditions Using LTNE Model
,”
Int. J. Heat Mass Transfer
,
128
, pp.
1280
1295
.10.1016/j.ijheatmasstransfer.2018.08.132
44.
Kelestani
,
A. F.
,
Nazari
,
M.
, and
Mahmoudi
,
Y.
,
2021
, “
Pulsating Flow in a Channel Filled With a Porous Medium Under Local Thermal Non-Equilibrium Condition: An Exact Solution
,”
J. Therm. Anal. Calorim.
, 145, pp.
2753
2775
.10.1007/s10973-020-09843-0
45.
Chandra
,
H.
, and
Bera
,
P.
,
2024
, “
Natural Convection Due to Lateral Uniform Heat Flux in a Slender Porous Cavity Saturated With Nanofluid: Departure From LTE State
,”
Numer. Heat Transfer, Part A: Appl.
,
85
(
13
), pp.
2045
2068
.10.1080/10407782.2023.2214332
46.
Sharma
,
A. K.
, and
Bera
,
P.
,
2018
, “
Linear Stability of Mixed Convection in a Differentially Heated Vertical Channel Filled With High Permeable Porous-Medium
,”
Int. J. Therm. Sci.
,
134
, pp.
622
638
.10.1016/j.ijthermalsci.2018.08.027
47.
Bera
,
P.
, and
Khalili
,
A.
,
2007
, “
Stability of Buoyancy Opposed Mixed Convection in a Vertical Channel and Its Dependence on Permeability
,”
Adv. Water Resour.
,
30
(
11
), pp.
2296
2308
.10.1016/j.advwatres.2007.05.003
48.
Calcagni
,
B.
,
Marsili
,
F.
, and
Paroncini
,
M.
,
2005
, “
Natural Convective Heat Transfer in Square Enclosures Heated From Below
,”
Appl. Therm. Eng.
,
25
(
16
), pp.
2522
2531
.10.1016/j.applthermaleng.2004.11.032
You do not currently have access to this content.