Abstract
A new bioheat transfer equation is developed by introducing the memory-dependent derivative into dual-phase lag model. The heat transfer process of memory-dependent derivative in biological tissue under a moving heat source is studied. Besides, thermal conductivity is usually no longer constant at high temperature. The nonlinear temperature governing equation with considering variable thermal conductivity is formulated and the solutions are obtained by the methods of Kirchhoff and Laplace transformations. The influences of heat source velocity, variable thermal conductivity, relaxation time, and kernel function on the variation of temperature are analyzed.
References
1.
Bhandari
,
D. S.
,
Tripathi
,
D.
, and
Prakash
,
J.
, 2022
, “
Insight Into Newtonian Fluid Flow and Heat Transfer in Vertical Microchannel Subject to Rhythmic Membrane Contraction Due to Pressure Gradient and Buoyancy Forces
,” Int. J. Heat Mass Transfer
,
184
, p. 122249
.10.1016/j.ijheatmasstransfer.2021.1222492.
Sridhar
,
V.
,
Ramesh
,
K.
,
Tripathi
,
D.
, and
Vivekanand
,
V.
, 2022
, “
Analysis of Thermal Radiation, Joule Heating, and Viscous Dissipation Effects on Blood-Gold Couple Stress Nanofluid Flow Driven by Electroosmosis
,” Heat Transfer
,
51
(5
), pp. 4080
–4101
.10.1002/htj.224903.
Pennes
,
H. H.
, 1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,” J. Appl. Physiol.
,
1
(2
), pp. 93
–122
.10.1152/jappl.1948.1.2.934.
Kengne
,
E.
,
Lakhssassi
,
A.
, and
Vaillancourt
,
R.
, 2012
, “
Temperature Distributions for Regional Hypothermia Based on Nonlinear Bioheat Equation of Pennes Type: Dermis and Subcutaneous Tissues
,” Appl. Math.
,
03
(03
), pp. 217
–224
.10.4236/am.2012.330355.
Suleman
,
M.
,
Riaz
,
S.
, and
Jalil
,
R.
, 2020
, “
A Mathematical Modeling Approach Toward Magnetic Fluid Hyperthermia of Cancer and Unfolding Heating Mechanism
,” J. Therm. Anal. Calorim.
,
146
(3
), pp. 1193
–1219
.10.1007/s10973-020-10080-86.
Kaminski
,
W.
, 1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,” ASME J. Heat Mass Transfer-Trans. ASME
,
112
(3
), pp. 555
–560
.10.1115/1.29104227.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
, 2003
, “
Experiment and Analysis for non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,” Int. J. Therm. Sci.
,
42
(6
), pp. 541
–552
.10.1016/S1290-0729(03)00020-68.
Zhang
,
P.
,
Murakami
,
M.
, and
Wang
,
R. Z.
, 2006
, “
Study of the Transient Thermal Wave Heat Transfer in a Channel Immersed in a Bath of Superfluid Helium
,” Int. J. Heat Mass Transfer
,
49
(7–8
), pp. 1384
–1394
.10.1016/j.ijheatmasstransfer.2005.09.0319.
Wang
,
J. J.
,
Zheng
,
R. T.
,
Gao
,
J. W.
, and
Chen
,
G.
, 2012
, “
Heat Conduction Mechanisms in Nanofluids and Suspensions
,” Nano Today
,
7
(2
), pp. 124
–136
.10.1016/j.nantod.2012.02.00710.
Tzou
,
D. Y.
, 1995
, “
A Unified Field Approach for Heat-Conduction From Macro-Scales to Micro-Scales
,” ASME J. Heat Mass Transfer-Trans. ASME
,
117
(1
), pp. 8
–16
.10.1115/1.282232911.
Tzou
,
D. Y.
, 1995
, “
Experimental Support for the Lagging Behavior in Heat Propagation
,” J. Thermophys. Heat Transfer
,
9
(4
), pp. 686
–693
.10.2514/3.72512.
Cattaneo
,
C.
, 1958
, “
A Form of Heat Equation Which Eliminates the Paradox of Instantaneous Propagation
,” C. R. Acad. Sci.
,
247
, pp. 431
–433
.13.
Vernotte
,
P.
, 1958
, “
Les Paradoxes de la Théorie Continue de Léquation de la Chaleur
,” C. R. Hebd. Acad. Sci.
,
246
(22
), pp. 3154
–3155
.14.
Green
,
A. E.
, and
Naghdi
,
P. M.
, 1993
, “
Thermoelasticity Without Energy Dissipation
,” J. Elasticity
,
31
(3
), pp. 189
–208
.10.1007/BF0004496915.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
, 1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,” ASME J. Heat Mass Transfer-Trans. ASME
,
117
(3
), pp. 568
–573
.10.1115/1.282261516.
Liu
,
J.
,
Ren
,
Z. P.
, and
Wang
,
C. C.
, 1995
, “
Interpretation of Living Tissue's Temperature Oscillations by Thermal Wave Theory
,” Chin. Sci. Bull.
,
40
(17
), pp. 1493
–1495
.17.
Li
,
X. Y.
, and
Tian
,
X. G.
, 2022
, “
The Thermal Response of Three-Dimensional Skin Tissue Subjected to Multiple Laser Beams
,” Wave Random Complex Media
, pp. 1
–16
.10.1080/17455030.2022.211299218.
Li
,
X. Y.
, and
Tian
,
X. G.
, 2022
, “
The Thermal Injury Analysis of Skin Tissue With a New Nonlocal Dual Phase Lag Model
,” Wave Random Complex Media
, pp. 1
–14
.10.1080/17455030.2022.208029919.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
, 2015
, “
Analytical Study on the Transient Heating of a Two-Dimensional Skin Tissue Using Parabolic and Hyperbolic Bioheat Transfer Equations
,” Appl. Math. Model.
,
39
(13
), pp. 3704
–3720
.10.1016/j.apm.2014.12.00320.
Li
,
X.
,
Li
,
C.
,
Xue
,
Z.
, and
Tian
,
X.
, 2018
, “
Analytical Study of Transient Thermo-Mechanical Responses of Dual-Layer Skin Tissue With Variable Thermal Material Properties
,” Int. J. Therm. Sci.
,
124
, pp. 459
–466
.10.1016/j.ijthermalsci.2017.11.00221.
Li
,
X.
,
Li
,
C.
,
Xue
,
Z.
, and
Tian
,
X.
, 2019
, “
Investigation of Transient Thermo-Mechanical Responses on the Triple-Layered Skin Tissue With Temperature Dependent Blood Perfusion Rate
,” Int. J. Therm. Sci.
,
139
, pp. 339
–349
.10.1016/j.ijthermalsci.2019.02.02222.
Li
,
X. Y.
,
Q
,
Q. H.
, and
Tian
,
X. G.
, 2020
, “
Thermo-Viscoelastic Analysis of Biological Tissue During Hyperthermia Treatment
,” Appl. Math. Model.
,
79
, pp. 881
–895
.10.1016/j.apm.2019.11.00723.
Li
,
X. Y.
, and
Tian
,
X. G.
, 2021
, “
Fractional Order Thermo-Viscoelastic Theory of Biological Tissue With Dual Phase Lag Heat Conduction Model
,” Appl. Math. Model.
,
95
, pp. 612
–622
.10.1016/j.apm.2021.02.02824.
Lee
,
J.
,
Rabin
,
Y.
, and
Ozdoganlar
,
O. B.
, 2011
, “
A New Thermal Model for Bone Drilling With Applications to Orthopaedic Surgery
,” Med. Eng. Phys.
,
33
(10
), pp. 1234
–1244
.10.1016/j.medengphy.2011.05.01425.
Schomacker
,
K. T.
,
Walsh
,
J. T.
, Jr.
,
Flotte
,
T. J.
, and
Deutsch
,
T. F.
, 1990
, “
Thermal Damage Produced by high-Irradiance Continuous Wave CO2 Laser Cutting of Tissue
,” Lasers Surg. Med.
,
10
(1
), pp. 74
–84
.10.1002/lsm.190010011526.
Tai
,
B. L.
,
Zhang
,
L.
,
Wang
,
A. C.
,
Sullivan
,
S.
,
Wang
,
G.
, and
Shih
,
A. J.
, 2013
, “
Temperature Prediction in High Speed Bone Grinding Using Motor PWM Signal
,” Med. Eng. Phys.
,
35
(10
), pp. 1545
–1549
.10.1016/j.medengphy.2013.05.01127.
Khamis
,
A. K.
,
El-Bary
,
A. A.
,
Youssef
,
H. M.
, and
Nasr
,
A. M.
, 2019
, “
Two-Temperature High-Order Lagging Effect of Living Tissue Subjected to Moving Heat Source
,” Microsyst. Technol.
,
25
(12
), pp. 4731
–4740
.10.1007/s00542-019-04443-x28.
Sur
,
A.
,
Mondal
,
S.
, and
Kanoria
,
M.
, 2020
, “
Influence of Moving Heat Source on Skin Tissue in the Context of Two-Temperature Memory-Dependent Heat Transport Law
,” J. Therm. Stresses
,
43
(1
), pp. 55
–71
.10.1080/01495739.2019.166028829.
Kabiri
,
A.
, and
Talaee
,
M. R.
, 2021
, “
Thermal Field and Tissue Damage Analysis of Moving Laser in Cancer Thermal Therapy
,” Laser Med. Sci.
,
36
(3
), pp. 583
–597
.10.1007/s10103-020-03070-730.
Qi
,
H. T.
, and
Jiang
,
X. Y.
, 2011
, “
Solutions of the Space-Time Fractional Cattaneo Diffusion Equation
,” Phys. A
,
390
(11
), pp. 1876
–1883
.10.1016/j.physa.2011.02.01031.
Ezzat
,
M. A.
,
AlSowayan
,
N. S.
,
Al-Muhiameed
,
Z. I. A.
, and
Ezzat
,
S. M.
, 2014
, “
Fractional Modelling of Pennes' Bioheat Transfer Equation
,” Heat Mass Transfer
,
50
(7
), pp. 907
–914
.10.1007/s00231-014-1300-x32.
Jiang
,
X. Y.
, and
Qi
,
H. T.
, 2012
, “
Thermal Wave Model of Bioheat Transfer With Modified Riemann-Liouville Fractional Derivative
,” J. Phys. A: Math. Theor.
,
45
(48
), p. 485101
.10.1088/1751-8113/45/48/48510133.
Povstenko
,
Y. Z.
, 2008
, “
Fractional Heat Conduction Equation and Associated Thermal Stresses in an Infinite Solid With Spherical Cavity
,” Q. J. Mech. Appl. Math.
,
61
(4
), pp. 523
–547
.10.1093/qjmam/hbn01634.
Povstenko
,
Y. Z.
, 2013
, “
Fractional Heat Conduction in Infinite One-Dimensional Composite Medium
,” J. Therm. Stresses
,
36
(4
), pp. 351
–363
.10.1080/01495739.2013.77069335.
Wang
,
J. L.
, and
Li
,
H. F.
, 2011
, “
Surpassing the Fractional Derivative: Concept of the Memory-Dependent Derivative
,” Comput. Math. Appl.
,
62
(3
), pp. 1562
–1567
.10.1016/j.camwa.2011.04.02836.
Yu
,
Y. J.
,
Hu
,
W.
, and
Tian
,
X. G.
, 2014
, “
A Novel Generalized Thermoelasticity Model Based on Memory-Dependent Derivative
,” Int. J. Eng. Sci.
,
81
, pp. 123
–134
.10.1016/j.ijengsci.2014.04.01437.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
, 2016
, “
Electro-Thermoelasticity Theory With Memory-Dependent Derivative Heat Transfer
,” Int. J. Eng. Sci.
,
99
, pp. 22
–38
.10.1016/j.ijengsci.2015.10.01138.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
, 2017
, “
On Dual-Phase-Lag Thermoelasticity Theory With Memory-Dependent Derivative
,” Mech. Adv. Mater. Struct.
,
24
(11
), pp. 908
–916
.10.1080/15376494.2016.119679339.
Shaw
,
S.
, 2020
, “
A Thermodynamic Analysis of an Enhanced Theory of Heat Conduction Model: Extended Influence of Finite Strain and Heat Flux
,” Int. J. Eng. Sci.
,
152
, p. 103277
.10.1016/j.ijengsci.2020.10327740.
Sarkar
,
I.
, and
Mukhopadhyay
,
B.
, 2021
, “
Thermo-Viscoelastic Interaction Under Dual-Phase-Lag Model With Memory-Dependent Derivative
,” Wave Random Complex Media
,
31
(6
), pp. 2214
–2237
.10.1080/17455030.2020.173673341.
Ma
,
J.
,
Yang
,
X.
,
Liu
,
S.
,
Sun
,
Y.
, and
Yang
,
J.
, 2018
, “
Exact Solution of Thermal Response in a Three-Dimensional Living Bio-Tissue Subjected to a Scanning Laser Beam
,” Int. J. Heat Mass Transfer
,
124
, pp. 1107
–1116
.10.1016/j.ijheatmasstransfer.2018.04.04242.
Alzahrani
,
F. S.
, and
Abbas
,
I. A.
, 2019
, “
Analytical Estimations of Temperature in a Living Tissue Generated by Laser Irradiation Using Experimental Data
,” J. Therm. Biol.
,
85
, p. 102421
.10.1016/j.jtherbio.2019.10242143.
Hobiny
,
A.
, and
Abbas
,
I.
, 2023
, “
The Effect of Fractional Derivatives on Thermo-Mechanical Interaction in Biological Tissues During Hyperthermia Treatment Using Eigenvalues Approach
,” Fractal Fract.
,
7
(6
), p. 432
.10.3390/fractalfract706043244.
Damor
,
R. S.
,
Kumar
,
S.
, and
Shukla
,
A. K.
, 2013
, “
Numerical Solution of Fractional Bioheat Equation With Constant and Sinusoidal Heat Flux Condition on Skin Tissue
,” Am. J. Math. Anal
,
1
, pp. 20
–24
.45.
Marin
,
M.
,
Hobiny
,
A.
, and
Abbas
,
I.
, 2021
, “
Finite Element Analysis of Nonlinear Bioheat Model in Skin Tissue Due to External Thermal Sources
,” Mathematics
,
9
(13
), p. 1459
.10.3390/math913145946.
Carslow
,
H. S.
,
Jaeger
,
J. C.
, and
Morral
,
J. E.
, 1959
, Conduction of Heat in Solids
,
The Clarendon Press
,
Oxford
, pp. 9
–12
.47.
Ghanmi
,
A.
, and
Abbas
,
I. A.
, 2019
, “
An Analytical Study on the Fractional Transient Heating Within the Skin Tissue During Thermal Energy
,” J. Therm. Biol.
,
82
, pp. 229
–233
.10.1016/j.jtherbio.2019.04.00348.
Brancik
,
L.
, 1999
, “
Programs for Fast Numerical Inversion of Laplace Transforms in MATLAB Language Environment
,” Proceedings of the 7th Conference MATLAB, Prague, Czech Republic
, pp. 27
–39
.49.
Song
,
Y.
,
Cheng
,
J. L.
,
Zheng
,
Q.
,
Chen
, Z. G.
,
Sun
L. L.
, and
Jiao
Q. L.
, 2017
, “
Diagnostic Value of Real-Time Shear-Wave Ultrasoelastic Imaging for Hepatic Hemangioma and Hepatocellular Hepatoma
,” J. Zhengzhou Univ.
,
52
(2
), pp. 221
–223
.10.13705/j.issn.1671-6825.2017.02.02950.
Kumar
,
D.
,
Kumar
,
P.
, and
Rai
,
K. N.
, 2016
, “
A Study of DPL Model of Heat Transfer in bi-Layer Tissues During MFH Treatment
,” Comput. Biol. Med.
,
75
, pp. 160
–172
.10.1016/j.compbiomed.2016.06.002Copyright © 2024 by ASME
You do not currently have access to this content.