Abstract

A new bioheat transfer equation is developed by introducing the memory-dependent derivative into dual-phase lag model. The heat transfer process of memory-dependent derivative in biological tissue under a moving heat source is studied. Besides, thermal conductivity is usually no longer constant at high temperature. The nonlinear temperature governing equation with considering variable thermal conductivity is formulated and the solutions are obtained by the methods of Kirchhoff and Laplace transformations. The influences of heat source velocity, variable thermal conductivity, relaxation time, and kernel function on the variation of temperature are analyzed.

References

1.
Bhandari
,
D. S.
,
Tripathi
,
D.
, and
Prakash
,
J.
,
2022
, “
Insight Into Newtonian Fluid Flow and Heat Transfer in Vertical Microchannel Subject to Rhythmic Membrane Contraction Due to Pressure Gradient and Buoyancy Forces
,”
Int. J. Heat Mass Transfer
,
184
, p.
122249
.10.1016/j.ijheatmasstransfer.2021.122249
2.
Sridhar
,
V.
,
Ramesh
,
K.
,
Tripathi
,
D.
, and
Vivekanand
,
V.
,
2022
, “
Analysis of Thermal Radiation, Joule Heating, and Viscous Dissipation Effects on Blood-Gold Couple Stress Nanofluid Flow Driven by Electroosmosis
,”
Heat Transfer
,
51
(
5
), pp.
4080
4101
.10.1002/htj.22490
3.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
4.
Kengne
,
E.
,
Lakhssassi
,
A.
, and
Vaillancourt
,
R.
,
2012
, “
Temperature Distributions for Regional Hypothermia Based on Nonlinear Bioheat Equation of Pennes Type: Dermis and Subcutaneous Tissues
,”
Appl. Math.
,
03
(
03
), pp.
217
224
.10.4236/am.2012.33035
5.
Suleman
,
M.
,
Riaz
,
S.
, and
Jalil
,
R.
,
2020
, “
A Mathematical Modeling Approach Toward Magnetic Fluid Hyperthermia of Cancer and Unfolding Heating Mechanism
,”
J. Therm. Anal. Calorim.
,
146
(
3
), pp.
1193
1219
.10.1007/s10973-020-10080-8
6.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
3
), pp.
555
560
.10.1115/1.2910422
7.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
,
2003
, “
Experiment and Analysis for non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
,
42
(
6
), pp.
541
552
.10.1016/S1290-0729(03)00020-6
8.
Zhang
,
P.
,
Murakami
,
M.
, and
Wang
,
R. Z.
,
2006
, “
Study of the Transient Thermal Wave Heat Transfer in a Channel Immersed in a Bath of Superfluid Helium
,”
Int. J. Heat Mass Transfer
,
49
(
7–8
), pp.
1384
1394
.10.1016/j.ijheatmasstransfer.2005.09.031
9.
Wang
,
J. J.
,
Zheng
,
R. T.
,
Gao
,
J. W.
, and
Chen
,
G.
,
2012
, “
Heat Conduction Mechanisms in Nanofluids and Suspensions
,”
Nano Today
,
7
(
2
), pp.
124
136
.10.1016/j.nantod.2012.02.007
10.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat-Conduction From Macro-Scales to Micro-Scales
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
11.
Tzou
,
D. Y.
,
1995
, “
Experimental Support for the Lagging Behavior in Heat Propagation
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
686
693
.10.2514/3.725
12.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
C. R. Acad. Sci.
,
247
, pp.
431
433
.
13.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Théorie Continue de Léquation de la Chaleur
,”
C. R. Hebd. Acad. Sci.
,
246
(
22
), pp.
3154
3155
.
14.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elasticity
,
31
(
3
), pp.
189
208
.10.1007/BF00044969
15.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
16.
Liu
,
J.
,
Ren
,
Z. P.
, and
Wang
,
C. C.
,
1995
, “
Interpretation of Living Tissue's Temperature Oscillations by Thermal Wave Theory
,”
Chin. Sci. Bull.
,
40
(
17
), pp.
1493
1495
.
17.
Li
,
X. Y.
, and
Tian
,
X. G.
,
2022
, “
The Thermal Response of Three-Dimensional Skin Tissue Subjected to Multiple Laser Beams
,”
Wave Random Complex Media
, pp.
1
16
.10.1080/17455030.2022.2112992
18.
Li
,
X. Y.
, and
Tian
,
X. G.
,
2022
, “
The Thermal Injury Analysis of Skin Tissue With a New Nonlocal Dual Phase Lag Model
,”
Wave Random Complex Media
, pp.
1
14
.10.1080/17455030.2022.2080299
19.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2015
, “
Analytical Study on the Transient Heating of a Two-Dimensional Skin Tissue Using Parabolic and Hyperbolic Bioheat Transfer Equations
,”
Appl. Math. Model.
,
39
(
13
), pp.
3704
3720
.10.1016/j.apm.2014.12.003
20.
Li
,
X.
,
Li
,
C.
,
Xue
,
Z.
, and
Tian
,
X.
,
2018
, “
Analytical Study of Transient Thermo-Mechanical Responses of Dual-Layer Skin Tissue With Variable Thermal Material Properties
,”
Int. J. Therm. Sci.
,
124
, pp.
459
466
.10.1016/j.ijthermalsci.2017.11.002
21.
Li
,
X.
,
Li
,
C.
,
Xue
,
Z.
, and
Tian
,
X.
,
2019
, “
Investigation of Transient Thermo-Mechanical Responses on the Triple-Layered Skin Tissue With Temperature Dependent Blood Perfusion Rate
,”
Int. J. Therm. Sci.
,
139
, pp.
339
349
.10.1016/j.ijthermalsci.2019.02.022
22.
Li
,
X. Y.
,
Q
,
Q. H.
, and
Tian
,
X. G.
,
2020
, “
Thermo-Viscoelastic Analysis of Biological Tissue During Hyperthermia Treatment
,”
Appl. Math. Model.
,
79
, pp.
881
895
.10.1016/j.apm.2019.11.007
23.
Li
,
X. Y.
, and
Tian
,
X. G.
,
2021
, “
Fractional Order Thermo-Viscoelastic Theory of Biological Tissue With Dual Phase Lag Heat Conduction Model
,”
Appl. Math. Model.
,
95
, pp.
612
622
.10.1016/j.apm.2021.02.028
24.
Lee
,
J.
,
Rabin
,
Y.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A New Thermal Model for Bone Drilling With Applications to Orthopaedic Surgery
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1234
1244
.10.1016/j.medengphy.2011.05.014
25.
Schomacker
,
K. T.
,
Walsh
,
J. T.
, Jr.
,
Flotte
,
T. J.
, and
Deutsch
,
T. F.
,
1990
, “
Thermal Damage Produced by high-Irradiance Continuous Wave CO2 Laser Cutting of Tissue
,”
Lasers Surg. Med.
,
10
(
1
), pp.
74
84
.10.1002/lsm.1900100115
26.
Tai
,
B. L.
,
Zhang
,
L.
,
Wang
,
A. C.
,
Sullivan
,
S.
,
Wang
,
G.
, and
Shih
,
A. J.
,
2013
, “
Temperature Prediction in High Speed Bone Grinding Using Motor PWM Signal
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1545
1549
.10.1016/j.medengphy.2013.05.011
27.
Khamis
,
A. K.
,
El-Bary
,
A. A.
,
Youssef
,
H. M.
, and
Nasr
,
A. M.
,
2019
, “
Two-Temperature High-Order Lagging Effect of Living Tissue Subjected to Moving Heat Source
,”
Microsyst. Technol.
,
25
(
12
), pp.
4731
4740
.10.1007/s00542-019-04443-x
28.
Sur
,
A.
,
Mondal
,
S.
, and
Kanoria
,
M.
,
2020
, “
Influence of Moving Heat Source on Skin Tissue in the Context of Two-Temperature Memory-Dependent Heat Transport Law
,”
J. Therm. Stresses
,
43
(
1
), pp.
55
71
.10.1080/01495739.2019.1660288
29.
Kabiri
,
A.
, and
Talaee
,
M. R.
,
2021
, “
Thermal Field and Tissue Damage Analysis of Moving Laser in Cancer Thermal Therapy
,”
Laser Med. Sci.
,
36
(
3
), pp.
583
597
.10.1007/s10103-020-03070-7
30.
Qi
,
H. T.
, and
Jiang
,
X. Y.
,
2011
, “
Solutions of the Space-Time Fractional Cattaneo Diffusion Equation
,”
Phys. A
,
390
(
11
), pp.
1876
1883
.10.1016/j.physa.2011.02.010
31.
Ezzat
,
M. A.
,
AlSowayan
,
N. S.
,
Al-Muhiameed
,
Z. I. A.
, and
Ezzat
,
S. M.
,
2014
, “
Fractional Modelling of Pennes' Bioheat Transfer Equation
,”
Heat Mass Transfer
,
50
(
7
), pp.
907
914
.10.1007/s00231-014-1300-x
32.
Jiang
,
X. Y.
, and
Qi
,
H. T.
,
2012
, “
Thermal Wave Model of Bioheat Transfer With Modified Riemann-Liouville Fractional Derivative
,”
J. Phys. A: Math. Theor.
,
45
(
48
), p.
485101
.10.1088/1751-8113/45/48/485101
33.
Povstenko
,
Y. Z.
,
2008
, “
Fractional Heat Conduction Equation and Associated Thermal Stresses in an Infinite Solid With Spherical Cavity
,”
Q. J. Mech. Appl. Math.
,
61
(
4
), pp.
523
547
.10.1093/qjmam/hbn016
34.
Povstenko
,
Y. Z.
,
2013
, “
Fractional Heat Conduction in Infinite One-Dimensional Composite Medium
,”
J. Therm. Stresses
,
36
(
4
), pp.
351
363
.10.1080/01495739.2013.770693
35.
Wang
,
J. L.
, and
Li
,
H. F.
,
2011
, “
Surpassing the Fractional Derivative: Concept of the Memory-Dependent Derivative
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1562
1567
.10.1016/j.camwa.2011.04.028
36.
Yu
,
Y. J.
,
Hu
,
W.
, and
Tian
,
X. G.
,
2014
, “
A Novel Generalized Thermoelasticity Model Based on Memory-Dependent Derivative
,”
Int. J. Eng. Sci.
,
81
, pp.
123
134
.10.1016/j.ijengsci.2014.04.014
37.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2016
, “
Electro-Thermoelasticity Theory With Memory-Dependent Derivative Heat Transfer
,”
Int. J. Eng. Sci.
,
99
, pp.
22
38
.10.1016/j.ijengsci.2015.10.011
38.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2017
, “
On Dual-Phase-Lag Thermoelasticity Theory With Memory-Dependent Derivative
,”
Mech. Adv. Mater. Struct.
,
24
(
11
), pp.
908
916
.10.1080/15376494.2016.1196793
39.
Shaw
,
S.
,
2020
, “
A Thermodynamic Analysis of an Enhanced Theory of Heat Conduction Model: Extended Influence of Finite Strain and Heat Flux
,”
Int. J. Eng. Sci.
,
152
, p.
103277
.10.1016/j.ijengsci.2020.103277
40.
Sarkar
,
I.
, and
Mukhopadhyay
,
B.
,
2021
, “
Thermo-Viscoelastic Interaction Under Dual-Phase-Lag Model With Memory-Dependent Derivative
,”
Wave Random Complex Media
,
31
(
6
), pp.
2214
2237
.10.1080/17455030.2020.1736733
41.
Ma
,
J.
,
Yang
,
X.
,
Liu
,
S.
,
Sun
,
Y.
, and
Yang
,
J.
,
2018
, “
Exact Solution of Thermal Response in a Three-Dimensional Living Bio-Tissue Subjected to a Scanning Laser Beam
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1107
1116
.10.1016/j.ijheatmasstransfer.2018.04.042
42.
Alzahrani
,
F. S.
, and
Abbas
,
I. A.
,
2019
, “
Analytical Estimations of Temperature in a Living Tissue Generated by Laser Irradiation Using Experimental Data
,”
J. Therm. Biol.
,
85
, p.
102421
.10.1016/j.jtherbio.2019.102421
43.
Hobiny
,
A.
, and
Abbas
,
I.
,
2023
, “
The Effect of Fractional Derivatives on Thermo-Mechanical Interaction in Biological Tissues During Hyperthermia Treatment Using Eigenvalues Approach
,”
Fractal Fract.
,
7
(
6
), p.
432
.10.3390/fractalfract7060432
44.
Damor
,
R. S.
,
Kumar
,
S.
, and
Shukla
,
A. K.
,
2013
, “
Numerical Solution of Fractional Bioheat Equation With Constant and Sinusoidal Heat Flux Condition on Skin Tissue
,”
Am. J. Math. Anal
,
1
, pp.
20
24
.
45.
Marin
,
M.
,
Hobiny
,
A.
, and
Abbas
,
I.
,
2021
, “
Finite Element Analysis of Nonlinear Bioheat Model in Skin Tissue Due to External Thermal Sources
,”
Mathematics
,
9
(
13
), p.
1459
.10.3390/math9131459
46.
Carslow
,
H. S.
,
Jaeger
,
J. C.
, and
Morral
,
J. E.
,
1959
,
Conduction of Heat in Solids
,
The Clarendon Press
,
Oxford
, pp.
9
12
.
47.
Ghanmi
,
A.
, and
Abbas
,
I. A.
,
2019
, “
An Analytical Study on the Fractional Transient Heating Within the Skin Tissue During Thermal Energy
,”
J. Therm. Biol.
,
82
, pp.
229
233
.10.1016/j.jtherbio.2019.04.003
48.
Brancik
,
L.
,
1999
, “
Programs for Fast Numerical Inversion of Laplace Transforms in MATLAB Language Environment
,”
Proceedings of the 7th Conference MATLAB, Prague, Czech Republic
, pp.
27
39
.
49.
Song
,
Y.
,
Cheng
,
J. L.
,
Zheng
,
Q.
,
Chen
,
Z. G.
,
Sun
L. L.
, and
Jiao
Q. L.
,
2017
, “
Diagnostic Value of Real-Time Shear-Wave Ultrasoelastic Imaging for Hepatic Hemangioma and Hepatocellular Hepatoma
,”
J. Zhengzhou Univ.
,
52
(
2
), pp.
221
223
.10.13705/j.issn.1671-6825.2017.02.029
50.
Kumar
,
D.
,
Kumar
,
P.
, and
Rai
,
K. N.
,
2016
, “
A Study of DPL Model of Heat Transfer in bi-Layer Tissues During MFH Treatment
,”
Comput. Biol. Med.
,
75
, pp.
160
172
.10.1016/j.compbiomed.2016.06.002
You do not currently have access to this content.