Abstract

A semi-analytical solution for the thermal conduction of a single phase, homogeneous, circular, hollow-cylinder with a growing or receding inner radius at a constant rate under unit-loading was derived using conformal mapping, Laplace transformation, and a Zakian series representation of the inverse Laplace transform. All solutions allow for convection on the fixed outer radius. Predictions were compared to finite element simulations with excellent agreement observed. Given the changing thickness, thermal transients could not reach true steady-state equilibrium, especially for faster growth or recession rates. Indeed, the temperature states become somewhat linear with respect to time, reflecting the constant velocity of growth or recession. In practice, the resulting solutions can be used to determine temperatures during machining, wear, erosion, corrosion, and/or additive manufacturing, especially for lower temperature solid-state methods such as cold-spray.

References

1.
Tayler
,
A. B.
,
1985
, “
Free and Moving Boundary Problems
,”
J. Fluid Mech.
,
158
, pp.
532
533
.10.1017/S0022112085212750
2.
Murphy
,
K.
,
1988
, “
Parameter Estimation in Moving Boundary Problems
,”
Appl. Math. Lett.
,
1
(
3
), pp.
303
306
.10.1016/0893-9659(88)90098-5
3.
Meredith
,
D.
, and
Rasmussen
,
H.
,
1992
, “
Boundary Approximation Methods for Potential Problems Associated With Moving Boundary Problems
,”
J. Comput. Appl. Math.
,
39
(
2
), pp.
133
149
.10.1016/0377-0427(92)90125-H
4.
Yüce
,
C.
,
2004
, “
Exact Solvability of Moving Boundary Problems
,”
Phys. Lett. A
,
327
(
2–3
), pp.
107
112
.10.1016/j.physleta.2004.05.014
5.
Cryer
,
C. C.
, and
Crank
,
J.
,
1986
, “
Free and Moving Boundary Problems
,”
Math. Comput.
,
46
(
174
), pp.
765
766
.10.2307/2008018
6.
Vuik
,
C.
,
1993
, “
Some Historical Notes About the Stefan Problem
,”
Nieuw Arch. Voor Wiskd. Ser.
,
11
(
5
), pp.
157
167
.https://diamhomes.ewi.tudelft.nl/~kvuik/papers/DUTTWI-93-07.pdf
7.
Crank
,
J.
,
1984
,
Free and Moving Boundary Problems
,
Clarendon
,
Oxford, UK
.
8.
Hill
,
J.
,
1987
,
One-Dimensional Stefan Problems: An Introduction
,
Wiley
,
New York
.
9.
Boley
,
B. A.
,
1968
, “
A General Starting Solution for Melting and Solidifying Slabs
,”
Int. J. Eng. Sci.
,
6
(
2
), pp.
89
111
.10.1016/0020-7225(68)90022-0
10.
Boley
,
B. A.
, and
Yagoda
,
H. P.
,
1970
, “
Starting Solution for Melting of a Slab Under Plane or Axisymmetric Hot Spot
,”
Q. J. Mech. Appl. Math.
,
23
(
2
), pp.
225
246
.10.1093/qjmam/23.2.225
11.
Boley
,
B. A.
, and
Yagoda
,
H. P.
,
1971
, “
The Three-Dimensional Starting Solution for a Melting Slab
,”
Proc. R. Soc. London Ser. A
,
323
(
1552
), pp.
89
110
.10.1098/rspa.1971.0089
12.
Gottlieb
,
H.
,
2002
, “
Exact Solution of a Stefan Problem in a Nonhomogeneous Cylinder
,”
Appl. Math. Lett.
,
15
(
2
), pp.
167
172
.10.1016/S0893-9659(01)00113-6
13.
Chen
,
S.
,
Merriman
,
B.
,
Osher
,
S.
, and
Smereka
,
P.
,
1997
, “
A Simple Level Set Method for Solving Stefan Problems
,”
J. Comput. Phys.
,
135
(
1
), pp.
8
29
.10.1006/jcph.1997.5721
14.
Huang
,
C.-L.
, and
Shih
,
Y.-P.
,
1975
, “
A Perturbation Method for Spherical and Cylindrical Solidification
,”
Chem. Eng. Sci.
,
30
(
8
), pp.
897
906
.10.1016/0009-2509(75)80055-8
15.
Danilovskaya
,
V. I.
,
1950
, “
Thermal Stresses in an Elastic Half-Space Due to Sudden Heating of Its Surface
,”
Prikl. Matem. Mekh.
,
14
, pp.
316
318
.https://sid.ir/paper/601878/en
16.
Semkin
,
B. V.
, and
Iushin
,
A. V.
,
1981
, “
On Danilovskaia Problem for the Case of a Boundary of an Elastic Half-Space Moving With Constant Velocity
,”
J. Appl. Math. Mech.
,
45
(
2
), pp.
291
292
.10.1016/0021-8928(81)90051-4
17.
Tadibakhsh
,
I. G.
,
1963
, “
Thermal Stresses in an Elastic Half-Space With a Moving Boundary
,”
AIAA J.
,
1
(
1
), pp.
214
215
.10.2514/3.1497
18.
Riley
,
D.
,
Smith
,
F.
, and
Poots
,
G.
,
1974
, “
The Inward Solidification of Spheres and Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
17
(
12
), pp.
1507
1516
.10.1016/0017-9310(74)90061-1
19.
Hill
,
J. M.
, and
Dewynne
,
J. N.
,
1986
, “
On the Inward Solidification of Cylinders
,”
Q. Appl. Math.
,
44
(
1
), pp.
59
70
.https://www.jstor.org/stable/43637347
20.
Tanigawa
,
Y.
, and
Kuriyama
,
S.
,
1985
, “
Transient Thermal Stresses and Thermal Deformations in a Solid Cylinder With a Moving Boundary
,”
Ing.-Arch.
,
55
(
3
), pp.
221
235
.10.1007/BF00536416
21.
Kumar
,
P.
,
Segall
,
A.
, and
Drapaca
,
C.
,
2024
, “
Semi-Analytical Solution for a Single-Phase Conduction Problem of a Finite-Slab With a Growing or Receding Boundary
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
6
), p.
061001
.10.1115/1.4064829
22.
Zakian
,
V.
,
1969
, “
Numerical Inversion of Laplace Transform
,”
Electron. Lett.
,
5
(
6
), pp.
120
121
.10.1049/el:19690090
23.
Segall
,
A. E.
,
Schoof
,
C. C.
, and
Yastishock
,
D. E.
,
2020
, “
Thermal Solutions for a Plate With an Arbitrary Temperature Transient on One Surface and Convection on the Other: Direct and Inverse Formulations
,”
ASME J. Pressure Vessel Technol.
,
142
(
5
), p.
051301
.10.1115/1.4046978
24.
Halsted
,
D.
, and
Brown
,
D.
,
1972
, “
Zakian's Technique for Inverting Laplace Transforms
,”
Chem. Eng. J.
,
3
, pp.
312
313
.10.1016/0300-9467(72)85037-8
You do not currently have access to this content.