Abstract

The flow features and heat transfer enhancement of electro-thermo-convection (ETC) in dielectric liquids with residual conductivity between concentric electrodes are numerically studied based on an injection–conduction model. The strongly coupled flow field, electric field, and positive/negative charge density of the ETC system are solved numerically based on the finite volume framework of OpenFOAM®. The total variation-diminishing algorithm is adopted to handle the complex nonlinearity of the positive/negative charge transport equations. The bifurcation of plentiful flow states that are characterized by variable plumes and vortex pairs in the ETC system is investigated. It is discovered that the residual conductivity postpones the beginning of ETC flow, inhibits the convection intensity, and also diminishes heat transfer of the ETC system. In addition, the transition sequences of ETC flow are also influenced by residual conductivity. A higher residual conductivity suppresses the occurrence of different intermediate steady-states. Three different transition sequences of steady ETC states at different Rayleigh numbers (Ra) are identified. The critical point where the ETC flow bifurcates to S8 is postponed at higher Ra. And the ETC system is more prone to chaos in a system of higher Ra. The periodicity of the ETC system is analyzed and found that Ra has little influence on the periodicity.

References

1.
Pedlosky
,
J.
,
1987
,
Geophysical Fluid Dynamics
,
Springer
, New York.
2.
Polashenski
,
C.
,
Golden
,
K. M.
,
Perovich
,
D. K.
,
Skyllingstad
,
E.
,
Arnsten
,
A.
,
Stwertka
,
C.
, and
Wright
,
N.
,
2017
, “
Percolation Blockage: A Process That Enables Melt Pond Formation on First Year Arctic Sea Ice
,”
J. Geophys. Res.: Oceans
,
122
(
1
), pp.
413
440
.10.1002/2016JC011994
3.
Rueda-Gómez
,
D. A.
, and
Villamizar-Roa
,
E. J.
,
2017
, “
On the Rayleigh–Bénard–Marangoni System and a Related Optimal Control Problem
,”
Comput. Math. Appl.
,
74
(
12
), pp.
2969
2991
.10.1016/j.camwa.2017.07.038
4.
Castellanos
,
A.
,
1998
,
Electrohydrodynamics
,
Springer
,
New York
.
5.
Atten
,
P.
,
McCluskey
,
F. M. J.
, and
Perez
,
A. T.
,
1988
, “
Electroconvection and Its Effect on Heat Transfer
,”
IEEE Trans. Electr. Insul.
,
23
(
4
), pp.
659
667
.10.1109/14.7338
6.
Li
,
T.-F.
,
Luo
,
K.
, and
Yi
,
H.-L.
,
2020
, “
Effect of Unipolar Charge Injection Direction on the Onset of Rayleigh-Bénard Convection: A Lattice Boltzmann Study
,”
Int. Commun. Heat Mass Transfer
,
112
, p.
104496
.10.1016/j.icheatmasstransfer.2020.104496
7.
Hassen
,
W.
,
Kolsi
,
L.
,
Ghachem
,
K.
,
Almeshaal
,
M. A.
,
Maatki
,
C.
, and
Borjini
,
M. N.
,
2021
, “
Numerical Investigation of Electro-Thermo-Convection in a Square Enclosure With Incorporated Hot Solid Body
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2647
2661
.10.1007/s10973-020-09821-6
8.
Zhang
,
Y.
,
Jiang
,
H.-K.
,
Luo
,
K.
,
Li
,
T.-F.
,
Wu
,
J.
, and
Yi
,
H.-L.
,
2023
, “
Electro-Thermo-Convection in a High Prandtl Number Fluid: Flow Transition and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
201
, p.
123630
.10.1016/j.ijheatmasstransfer.2022.123630
9.
Ryu
,
J. C.
,
Park
,
H. J.
,
Park
,
J. K.
, and
Kang
,
K. H.
,
2010
, “
New Electrohydrodynamic Flow Caused by the Onsager Effect
,”
Phys. Rev. Lett.
,
104
(
10
), p.
104502
.10.1103/PhysRevLett.104.104502
10.
Atten
,
P.
,
1996
, “
Electrohydrodynamic Instability and Motion Induced by Injected Space Charge in Insulating Liquids
,”
IEEE Trans. Dielectr. Electr. Insul.
,
3
(
1
), pp.
1
17
.10.1109/94.485510
11.
Wu
,
J.
,
Traoré
,
P.
,
Pérez
,
A. T.
, and
Vázquez
,
P. A.
,
2015
, “
On Two-Dimensional Finite Amplitude Electro-Convection in a Dielectric Liquid Induced by a Strong Unipolar Injection
,”
J. Electrost.
,
74
, pp.
85
95
.10.1016/j.elstat.2015.01.002
12.
Traoré
,
P.
, and
Pérez
,
A. T.
,
2012
, “
Two-Dimensional Numerical Analysis of Electroconvection in a Dielectric Liquid Subjected to Strong Unipolar Injection
,”
Phys. Fluids
,
24
(
3
), p.
037102
.10.1063/1.3685721
13.
Ma
,
B.
,
Wang
,
L.
,
He
,
K.
, and
Li
,
D.
,
2021
, “
Electro-Thermo-Convection in Power-Law Fluids Within a Square Enclosure With an Inner Cylinder
,”
Phys. Fluids
,
33
(
8
), p.
083104
.10.1063/5.0061197
14.
Agrait
,
N.
, and
Castellanos
,
A.
,
1990
, “
Linear Convective Patterns in Cylindrical Geometry for Unipolar Injection
,”
Phys. Fluids A
,
2
(
1
), pp.
37
44
.10.1063/1.857689
15.
Fernandes
,
D. V.
,
Lee
,
H.-D.
,
Alapati
,
S.
, and
Suh
,
Y. K.
,
2012
, “
Numerical Simulation of the Electro-Convective Onset and Complex Flows of Dielectric Liquid in an Annulus
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3785
3793
.10.1007/s12206-012-1005-3
16.
Fernandes
,
D. V.
,
Lee
,
H.-D.
,
Park
,
S.
, and
Suh
,
Y. K.
,
2013
, “
Electrohydrodynamic Instability of Dielectric Liquid Between Concentric Circular Cylinders Subjected to Unipolar Charge Injection
,”
J. Mech. Sci. Technol.
,
27
(
2
), pp.
461
467
.10.1007/s12206-012-1260-3
17.
Wu
,
J.
,
Vazquez
,
P. A.
,
Traore
,
P.
, and
Perez
,
A. T.
,
2014
, “
Finite Amplitude Electroconvection Induced by Strong Unipolar Injection Between Two Coaxial Cylinders
,”
Phys. Fluids
,
26
(
12
), p.
124105
.10.1063/1.4903284
18.
Wang
,
L.
,
Wei
,
Z.
,
Li
,
T.
,
Chai
,
Z.
, and
Shi
,
B.
,
2021
, “
A Lattice Boltzmann Modelling of Electrohydrodynamic Conduction Phenomenon in Dielectric Liquids
,”
Appl. Math. Modell.
,
95
, pp.
361
378
.10.1016/j.apm.2021.01.054
19.
Pontiga
,
F.
, and
Castellanos
,
A.
,
1992
, “
The Onset of Electrothermal Convection in Nonpolar Liquids on the Basis of a Dissociation-Injection Conductivity Model
,”
IEEE Trans. Ind. Appl.
,
28
(
3
), pp.
520
527
.10.1109/28.137429
20.
Pontiga
,
F.
, and
Castellanos
,
A.
,
1994
, “
Physical Mechanisms of Instability in a Liquid Layer Subjected to an Electric Field and a Thermal Gradient
,”
Phys. Fluids
,
6
(
5
), pp.
1684
1701
.10.1063/1.868231
21.
Yan
,
Y. Y.
,
Zhang
,
H. B.
, and
Hull
,
J. B.
,
2004
, “
Numerical Modeling of Electrohydrodynamic (EHD) Effect on Natural Convection in an Enclosure
,”
Numer. Heat Transfer, Part A
,
46
(
5
), pp.
453
471
.10.1080/10407780490478461
22.
Traoré
,
P.
,
Pérez
,
A. T.
,
Koulova
,
D.
, and
Romat
,
H.
,
2010
, “
Numerical Modelling of Finite-Amplitude Electro-Thermo-Convection in a Dielectric Liquid Layer Subjected to Both Unipolar Injection and Temperature Gradient
,”
J. Fluid Mech.
,
658
, pp.
279
293
.10.1017/S0022112010001709
23.
Taraut
,
A. V.
, and
Smorodin
,
B. L.
,
2012
, “
Electroconvection in the Presence of Autonomous Unipolar Injection and Residual Conductivity
,”
J. Exp. Theor. Phys.
,
115
(
2
), pp.
361
369
.10.1134/S1063776112070187
24.
Wu
,
J.
, and
Traoré
,
P.
,
2015
, “
A Finite Volume Method for Electro-Thermoconvective Phenomena in a Plane Layer of Dielectric Liquid
,”
Numer. Heat Transfer, Part A
,
68
(
5
), pp.
471
500
.10.1080/10407782.2014.986410
25.
Hassen
,
W.
,
Oztop
,
H. F.
,
Kolsi
,
L.
,
Borjini
,
M. N.
, and
Abu-Hamdeh
,
N.
,
2017
, “
Analysis of the Electro-Thermo-Convection Induced by a Strong Unipolar Injection Between Two Concentric or Eccentric Cylinders
,”
Numer. Heat Transfer, Part A
,
71
(
7
), pp.
789
804
.10.1080/10407782.2017.1308725
26.
Li
,
T.-F.
,
Wu
,
J.
,
Luo
,
K.
, and
Yi
,
H.-L.
,
2018
, “
Lattice Boltzmann Simulation of Electro-Hydro-Dynamic (EHD) Natural Convection Heat Transfer in Horizontal Cylindrical Annuli
,”
Int. Commun. Heat Mass Transfer
,
98
, pp.
106
115
.10.1016/j.icheatmasstransfer.2018.08.014
27.
Luo
,
K.
,
Gao
,
X.-L.
,
He
,
X.-R.
,
Yi
,
H.-L.
, and
Wu
,
J.
,
2022
, “
Formation of Dissipative Structures in a Three-Dimensional Electro-Thermo-Convective Flow
,”
Phys. Rev. Fluids
,
7
(
4
), p.
043701
.10.1103/PhysRevFluids.7.043701
28.
Li
,
T. F.
,
Su
,
Z. G.
,
Luo
,
K.
, and
Yi
,
H. L.
,
2020
, “
Transition to Chaos in Electro-Thermo-Convection of a Dielectric Liquid in a Square Cavity
,”
Phys. Fluids
,
32
(
1
), p.
013106
.10.1063/1.5126007
29.
Huang
,
J. Y.
,
Wu
,
J.
,
Du
,
Z. L.
,
Vázquez
,
P. A.
, and
Pérez
,
A. T.
,
2022
, “
Numerical Analysis of Electro-Convection in Dielectric Liquids With Residual Conductivity
,”
Phys. Fluids
,
34
(
4
), p.
044102
.10.1063/5.0086189
30.
Suh
,
Y. K.
,
2012
, “
Modeling and Simulation of Ion Transport in Dielectric Liquids-Fundamentals and Review
,”
IEEE Trans. Dielectr. Electr. Insul.
,
19
, p.
831
.10.1109/TDEI.2012.6215086
31.
Barletta
,
A.
,
2022
, “
The Boussinesq Approximation for Buoyant Flows
,”
Mech. Res. Commun.
,
124
, p.
103939
.10.1016/j.mechrescom.2022.103939
32.
Vázquez
,
P. A.
,
Talmor
,
M.
,
Seyed-Yagoobi
,
J.
,
Traoré
,
P.
, and
Yazdani
,
M.
,
2019
, “
In-Depth Description of Electrohydrodynamic Conduction Pumping of Dielectric Liquids: Physical Model and Regime Analysis
,”
Phys. Fluids
,
31
(
11
), p.
113601
.10.1063/1.5121164
33.
Wang
,
Q.
,
Guan
,
Y.
,
Wei
,
T.
, and
Wu
,
J.
,
2022
, “
Transition Sequences and Heat Transfer Enhancement in Electro-Thermo-Convection of a Dielectric Liquid Between Two Parallel Electrodes
,”
Int. J. Therm. Sci.
,
179
, p.
107705
.10.1016/j.ijthermalsci.2022.107705
34.
Huang
,
J.
,
Wu
,
J.
,
Yang
,
C.
,
Traoré
,
P.
, and
Du
,
Z.
,
2023
, “
Numerical Study of Electro-Convection Between Annular Electrodes Based on a Dissociation-Injection Mechanism
,”
Eur. J. Mech. B/Fluids
,
100
, pp.
82
98
.10.1016/j.euromechflu.2023.03.002
35.
Darwish
,
M.
, and
Moukalled
,
F.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With OpenFOAM® and Matlab®
,
Springer
, New York.
36.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
37.
Van Leer
,
B.
,
1997
, “
Towards the Ultimate Conservative Difference Scheme
,”
J. Comput. Phys.
,
135
(
2
), pp.
229
248
.10.1006/jcph.1997.5704
38.
Wu
,
J.
,
Traoré
,
P.
,
Zhang
,
M.
,
Pérez
,
A. T.
, and
Vázquez
,
P. A.
,
2016
, “
Charge Injection Enhanced Natural Convection Heat Transfer in Horizontal Concentric Annuli Filled With a Dielectric Liquid
,”
Int. J. Heat Mass Transfer
,
92
, pp.
139
148
.10.1016/j.ijheatmasstransfer.2015.08.088
You do not currently have access to this content.