Abstract

In this study, saturated pool boiling experiments were conducted on copper minichannel and flat surfaces at atmospheric pressure using water as the working fluid. The heat transfer performance was assessed through point measurements with a heater block, cartridge heaters, and thermocouples, as well as field measurements using a thin-foil heater and infrared thermography. Two copper minichannel surfaces with square cross sections of 1 mm (minichannel-1) and 2 mm (minichannel-2) side lengths were tested and compared to a flat surface. Minichannel-1 and minichannel-2 enhanced the critical heat flux (CHF) by 17% and 45%, respectively, and improved the heat transfer coefficient by 24–40% and 51–75%, respectively, compared to the flat surface. Minichannel-2 exhibited the lowest and most uniform boiling surface temperature, making it the best performer among the three. There was no significant change in departure frequency among the surfaces, and no significant change in departure diameter for the flat surface and minichannel-1. However, minichannel-2 had lower departure diameters due to its deeper channels, which prevented bubble coalescence and maintained low departure diameters. Additionally, minichannel-2 delayed vapor film formation by breaking it with its deeper fins, thereby improving CHF and slightly enhancing bubble dynamics. The enhancement in boiling heat transfer is primarily attributed to the increased surface area provided by the minichannels, with a minor contribution from improved bubble dynamics. However, the dominant factor in enhancing pool boiling heat transfer on minichannel surfaces is the increase in surface area.

References

1.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.10.1016/j.ijheatmasstransfer.2018.09.026
2.
Liang
,
G.
, and
Mudawar
,
I.
,
2018
, “
Review of Pool Boiling Enhancement With Additives and Nanofluids
,”
Int. J. Heat Mass Transfer
,
124
, pp.
423
453
.10.1016/j.ijheatmasstransfer.2018.03.046
3.
Das
,
A.
,
Ganguly
,
R.
,
Schutzius
,
T. M.
,
Kim
,
C.-J.
,
Betz
,
A. R.
,
Frankiewicz
,
C.
,
Attinger
,
D.
, and
Megaridis
,
C. M.
,
2014
, “
Surface Engineering for Phase Change Heat Transfer: A Review
,”
MRS Energy Sustainability
,
1
(
4
), pp.
1
40
.10.1557/mre.2014.9
4.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages-Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.10.1080/01457630304040
5.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
5
), p.
052902
.10.1115/1.4003046
6.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
7.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels
,”
Int. J. Heat Mass Transfer
,
88
, pp.
652
661
.10.1016/j.ijheatmasstransfer.2015.04.100
8.
Walunj
,
A.
, and
Sathyabhama
,
A.
,
2018
, “
Comparative Study of Pool Boiling Heat Transfer From Various Microchannel Geometries
,”
Appl. Therm. Eng.
,
128
, pp.
672
683
.10.1016/j.applthermaleng.2017.08.157
9.
Kaniowski
,
R.
, and
Pastuszko
,
R.
,
2021
, “
Pool Boiling of Water on Surfaces With Open Microchannels
,”
Energies
,
14
(
11
), p.
3062
.10.3390/en14113062
10.
Gheitaghy
,
A. M.
,
Samimi
,
A.
, and
Saffari
,
H.
,
2017
, “
Surface Structuring With Inclined Minichannels for Pool Boiling Improvement
,”
Appl. Therm. Eng.
,
126
, pp.
892
902
.10.1016/j.applthermaleng.2017.07.200
11.
Pastuszko
,
R.
,
Kaniowski
,
R.
,
Dadas
,
N.
, and
Bedla-Pawlusek
,
M.
,
2021
, “
Pool Boiling Enhancement and a Method of Bubble Diameter Determination on Surfaces With Deep Minichannels
,”
Int. J. Heat Mass Transfer
,
179
, p.
121713
.10.1016/j.ijheatmasstransfer.2021.121713
12.
Liang
,
G.
, and
Mudawar
,
I.
,
2021
, “
Review of Nanoscale Boiling Enhancement Techniques and Proposed Systematic Testing Strategy to Ensure Cooling Reliability and Repeatability
,”
Appl. Therm. Eng.
,
184
, p.
115982
.10.1016/j.applthermaleng.2020.115982
13.
Lee
,
D.
,
Kim
,
B. S.
,
Moon
,
H.
,
Lee
,
N.
,
Shin
,
S.
, and
Cho
,
H. H.
,
2018
, “
Enhanced Boiling Heat Transfer on Nanowire-Forested Surfaces Under Subcooling Conditions
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1020
1030
.10.1016/j.ijheatmasstransfer.2017.12.100
14.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
15.
Memon
,
S.
,
2017
, “
Experimental Measurement of Hermetic Edge Seal's Thermal Conductivity for the Thermal Transmittance Prediction of Triple Vacuum Glazing
,”
Case Stud. Therm. Eng.
,
10
, pp.
169
178
.10.1016/j.csite.2017.06.002
16.
Schweizer
,
N.
,
2010
, “
Multi-Scale Investigation of Nucleate Boiling Phenomena in Microgravity
,”
Ph.D. Thesis
,
Technische Universität Darmstadt
, Darmstadt, Germany.https://tuprints.ulb.tu-darmstadt.de/3261/26/Dissertation_Schweizer_MultiScale_Investigation_Nucleate_Boiling_Microgravity_without_Appendix.pdf
17.
Sielaff
,
A.
,
2013
, “
Experimental Investigation of Single Bubbles and Bubble Interactions in Nucleate Boiling
,”
Ph.D. Thesis
,
Technische Universität Darmstadt
, Darmstadt, Germany.https://tuprints.ulb.tu-darmstadt.de/3703/1/Dissertation_Sielaff.pdf
18.
Guggilla
,
G.
,
Narayanaswamy
,
R.
, and
Pattamatta
,
A.
,
2020
, “
An Experimental Investigation Into the Spread and Heat Transfer Dynamics of a Train of Two Concentric Impinging Droplets Over a Heated Surface
,”
Exp. Therm. Fluid Sci.
,
110
, p.
109916
.10.1016/j.expthermflusci.2019.109916
19.
Goel
,
P.
,
Nayak
,
A. K.
,
Kulkarni
,
P. P.
, and
Joshi
,
J. B.
,
2017
, “
Experimental Study on Bubble Departure Characteristics in Subcooled Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
89
, pp.
163
176
.10.1016/j.ijmultiphaseflow.2016.10.012
20.
Pioro
,
I. L.
,
1999
, “
Experimental Evaluation of Constants for the Rohsenow Pool-Boiling Correlation
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
2003
2013
.10.1016/S0017-9310(98)00294-4
21.
Raza
,
M. Q.
,
Kumar
,
N.
, and
Raj
,
R.
,
2019
, “
Experimental Characterization and Modeling of Critical Heat Flux With Subcooled Foaming Solution
,”
Int. J. Therm. Sci.
,
141
, pp.
199
210
.10.1016/j.ijthermalsci.2019.03.007
22.
Mohanty
,
R. L.
, and
Das
,
M. K.
,
2017
, “
A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
466
494
.10.1016/j.rser.2017.04.092
23.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
657
666
.10.1016/0017-9310(70)90040-2
24.
Guichet
,
V.
,
Almahmoud
,
S.
, and
Jouhara
,
H.
,
2019
, “
Nucleate Pool Boiling Heat Transfer in Wickless Heat Pipes (Two-Phase Closed Thermosyphons): A Critical Review of Correlations
,”
Therm. Sci. Eng. Prog.
,
13
, p.
100384
.10.1016/j.tsep.2019.100384
25.
Kim
,
J.
, and
Kim
,
M. H.
,
2006
, “
On the Departure Behaviors of Bubble at Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
32
(
10–11
), pp.
1269
1286
.10.1016/j.ijmultiphaseflow.2006.06.010
You do not currently have access to this content.