Abstract

The closed-form solutions of models provide operators and designers with a better understanding of how the systems perform practically, thus improving critical industrial production operations. Due to this importance, the case study at hand seeks to find closed-form solutions of the internal momentum and temperature variation during the filtration process to advance fluid purification. Lie group analysis is used to transform a system of equations representing the flow and heat transfer into a solvable system without changing the dynamics of the case study. The transformed solvable system is then integrated to find closed-form solutions of the internal velocity (momentum) and temperature variation. The obtained closed-form solutions are then used to analyze the effects of physical parameters arising from the process dynamics to find combinations of parameters that yield maximum permeates outflow. The analysis conveys that the internal fluid velocity increases when enhancing the permeation parameter and minimizing Reynolds number, wave speed parameter, and chamber height.

References

1.
Das
,
S.
,
2010
, “
Effect of Constant Suction and Injection on MHD Three Dimensional Couette Flow and Heat Transfer Through a Porous Medium
,”
J. Nav. Archit. Mar. Eng.
,
6
(
1
), pp.
41
51
.10.3329/jname.v6i1.2570
2.
Seth
,
G. S.
,
Ansari
,
M. S.
, and
Nandkeolyar
,
R.
,
2011
, “
Unsteady Hydromagnetic Couette Flow Within a Porous Channel
,”
J. Appl. Sci. Eng.
,
14
(
1
), pp.
7
14
.http://jase.tku.edu.tw/articles/jase-201103-14-1-02.pdf
3.
Baoku
,
I.
,
Israel Cookey
,
C.
,
Olajuwon
,
B.
,
Baoku
,
I. G.
,
Israel-Cookey
,
C.
, and
Olajuwon
,
B. I.
,
2010
, “Magnetic Field and Thermal Radiation Effects on Steady Hydromagnetic Couette Flow Through a Porous Channel,”
Surv. Math. Appl.
,
5
, pp.
215
228
.https://www.utgjiu.ro/math/sma/v05/p16.pdf
4.
Boniface
,
K.
,
Jackson
,
K.
, and
Thomas
,
O.
,
2014
, “
Investigation of Hydro Magnetic Steady Flow Between Two Infinite Parallel Vertical Porous Plates
,”
Am. J. Appl. Math.
,
2
(
5
), pp.
170
178
.10.11648/j.ajam.20140205.14
5.
Makinde
,
O.
, and
Mhone
,
P.
,
2005
, “
Heat Transfer to MHD Oscillatory Flow in a Channel Filled With Porous Medium
,”
Rom. J. Phys.
,
50
(
9/10
), pp.
931
938
.https://www.researchgate.net/publication/228762638_Heat_transfer_to_MHD_oscillatory_flow_in_a_channel_Olled_with_porous_medium
6.
Badruddin
,
I. A.
,
Zainal
,
Z.
,
Aswatha Narayana
,
P.
,
Seetharamu
,
K.
, and
Siew
,
L. W.
,
2006
, “
Free Convection and Radiation Characteristics for a Vertical Plate Embedded in a Porous Medium
,”
Int. J. Numer. Methods Eng.
,
65
(
13
), pp.
2265
2278
.10.1002/nme.1541
7.
Magalakwe
,
G.
,
Lekoko
,
M.
,
Modise
,
K.
, and
Khalique
,
C. M.
,
2019
, “
Lie Group Analysis for MHD Squeezing Flow of Viscous Fluid Saturated in Porous Media
,”
Alexandria Eng. J.
,
58
(
3
), pp.
1001
1010
.10.1016/j.aej.2019.09.002
8.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2010
, “
Laminar Fully Developed Flow in Periodically Converging–Diverging Microtubes
,”
Heat Transfer Eng.
,
31
(
8
), pp.
628
634
.10.1080/01457630903463404
9.
Modise
,
K.
, and
Magalakwe
,
G.
,
2022
, “
An Internal Flow and Heat Transfer Inside a Solid Rocket Motor Combustion Chamber; a Lie Symmetry Approach
,”
Therm. Sci. Eng. Prog.
,
32
, p.
101237
.10.1016/j.tsep.2022.101237
10.
Akram
,
J.
,
Akbar
,
N. S.
, and
Maraj
,
E.
,
2020
, “
Chemical Reaction and Heat Source/Sink Effect on Magnetonano Prandtl-Eyring Fluid Peristaltic Propulsion in an Inclined Symmetric Channel
,”
Chin. J. Phys.
,
65
, pp.
300
313
.10.1016/j.cjph.2020.03.004
11.
Lekoko
,
M. L.
,
Oloniiju
,
S. D.
, and
Magalakwe
,
G.
,
2022
, “
Injection Driven Flow in a Dilating or Contracting Filter Chamber With Parabolic Left Inlet Velocity
,”
Int. J. Non-Linear Mech.
,
142
, p.
103986
.10.1016/j.ijnonlinmec.2022.103986
12.
Singh
,
K.
,
Pandey
,
A. K.
, and
Kumar
,
M.
,
2020
, “
Entropy Generation Impact on Flow of Micropolar Fluid Via an Inclined Channel With Non-Uniform Heat Source and Variable Fluid Properties
,”
Int. J. Appl. Comput. Math.
,
6
(
3
), pp. 1–12 .10.1007/s40819-020-00831-4
13.
Das
,
U. J.
, and
Dorjee
,
S.
,
2020
, “
Unsteady MHD Oscillatory Visco-Elastic Fluid Flow Through an Inclined Channel in Presence of Chemical Reaction With Soret and Dufour Effects
,”
Indian J. Pure Appl. Phys. (IJPAP)
,
58
(
9
), pp.
691
697
.https://nopr.niscpr.res.in/bitstream/123456789/55196/1/IJPAP%2058%289%29%20691-697.pdf
14.
Bluman
,
G. W.
, and
Kumei
,
S.
,
2013
,
Symmetries and Differential Equations
, Vol.
81
,
Springer Science & Business Media
, New York.
15.
Bakier
,
A.
,
Rashad
,
A.
, and
Mansour
,
M.
,
2009
, “
Group Method Analysis of Melting Effect on Mhd Mixed Convection Flow From Radiate Vertical Plate Embedded in a Saturated Porous Media
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2160
2170
.10.1016/j.cnsns.2008.06.016
16.
Nabwey
,
H. A.
,
El-Kabeir
,
S.
, and
Rashad
,
A.
,
2015
, “
Lie Group Analysis of Effects of Radiation and Chemical Reaction on Heat and Mass Transfer by Unsteady Slip Flow From a Non-Isothermal Stretching Sheet Immersed in a Porous Medium
,”
J. Comput. Theor. Nanosci.
,
12
(
11
), pp.
4056
4062
.10.1166/jctn.2015.4318
17.
Nabwey
,
H. A.
, and
El-Mky
,
H. A.
,
2019
, “
Lie Group Analysis of Thermophoresis on a Vertical Surface in a Porous Medium
,”
J. King Saud Univ.-Sci.
,
31
(
4
), pp.
1048
1055
.10.1016/j.jksus.2018.09.011
18.
Uddin
,
M. J.
,
Ferdows
,
M.
, and
Bég
,
O. A.
,
2014
, “
Group Analysis and Numerical Computation of Magneto-Convective Non-Newtonian Nanofluid Slip Flow From a Permeable Stretching Sheet
,”
Appl. Nanosci.
,
4
(
7
), pp.
897
910
.10.1007/s13204-013-0274-1
19.
Rashidi
,
M.
,
Momoniat
,
E.
,
Ferdows
,
M.
, and
Basiriparsa
,
A.
,
2014
, “
Lie Group Solution for Free Convective Flow of a Nanofluid Past a Chemically Reacting Horizontal Plate in a Porous Media
,”
Math. Probl. Eng.
,
2014
, pp.
1
21
.10.1155/2014/239082
20.
Rashidi
,
M. M.
,
Rahimzadeh
,
N.
,
Ferdows
,
M.
,
Uddin
,
M. J.
, and
Bég
,
O. A.
,
2012
, “
Group Theory and Differential Transform Analysis of Mixed Convective Heat and Mass Transfer From a Horizontal Surface With Chemical Reaction Effects
,”
Chem. Eng. Commun.
,
199
(
8
), pp.
1012
1043
.10.1080/00986445.2011.636850
21.
Javaid
,
S.
, and
Aziz
,
A.
,
2021
, “
Group Invariant Solutions for Flow and Heat Transfer of Power-Law Nanofluid in a Porous Medium
,”
Math. Probl. Eng.
,
2021
(
1
), pp. 1–14.10.1155/2021/9942425
22.
Bhuvaneswari
,
M.
,
Sivasankaran
,
S.
, and
Kim
,
Y. J.
,
2012
, “
Lie Group Analysis of Radiation Natural Convection Flow Over an Inclined Surface in a Porous Medium With Internal Heat Generation
,”
J. Porous Media
,
15
(
12
), pp.
1155
1164
.10.1615/JPorMedia.v15.i12.80
23.
Lee
,
J.
,
Kandaswamy
,
P.
,
Bhuvaneswari
,
M.
, and
Sivasankaran
,
S.
,
2008
, “
Lie Group Analysis of Radiation Natural Convection Heat Transfer Past an Inclined Porous Surface
,”
J. Mech. Sci. Technol.
,
22
(
9
), pp.
1779
1784
.10.1007/s12206-008-0622-3
24.
El-Kabeir
,
S.
,
El-Hakiem
,
M.
, and
Rashad
,
A.
,
2008
, “
Lie Group Analysis of Unsteady Mhd Three Dimensional by Natural Convection From an Inclined Stretching Surface Saturated Porous Medium
,”
J. Comput. Appl. Math.
,
213
(
2
), pp.
582
603
.10.1016/j.cam.2007.02.002
25.
Nabwey
,
H. A.
,
Khan
,
W. A.
, and
Rashad
,
A. M.
,
2020
, “
Lie Group Analysis of Unsteady Flow of Kerosene/Cobalt Ferrofluid Past a Radiated Stretching Surface With Navier Slip and Convective Heating
,”
Mathematics
,
8
(
5
), p.
826
.10.3390/math8050826
26.
Lekoko
,
M. L.
,
Oloniiju
,
S. D.
, and
Magalakwe
,
G.
,
2022
, “
Analysis of Pressure and Heat Distribution in a Dilating or Contracting Filter Chamber With Two Outlets Using Multivariate Spectral Quasilinearization Method
,”
Heat Transfer
,
51
(
2
), pp.
1543
1567
.10.1002/htj.22363
27.
Turkyilmazoglu
,
M.
,
2009
, “
Exact Solutions for the Incompressible Viscous Fluid of a Porous Rotating Disk Flow
,”
Int. J. Non-Linear Mech.
,
44
(
4
), pp.
352
357
.10.1016/j.ijnonlinmec.2008.12.007
28.
Turkyilmazoglu
,
M.
,
2015
, “
Exact Multiple Solutions for the Slip Flow and Heat Transfer in a Converging Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
(
10
), p.
101301
.10.1115/1.4030307
29.
Turkyilmazoglu
,
M.
,
2020
, “
Velocity Slip and Entropy Generation Phenomena in Thermal Transport Through Metallic Porous Channel
,”
J. Non-Equilib. Thermodyn.
,
45
(
3
), pp.
247
256
.10.1515/jnet-2019-0097
30.
Currie
,
I. G.
,
2016
,
Fundamental Mechanics of Fluids
,
CRC Press
, Boca Raton, FL.
31.
Kuo
,
B.-L.
,
2005
, “
Application of the Differential Transformation Method to the Solutions of the Free Convection Problem
,”
Appl. Math. Comput.
,
165
(
1
), pp.
63
79
.10.1016/j.amc.2004.04.090
You do not currently have access to this content.