Abstract

Cryogenic fluid management is highly crucial for NASAs space missions and one challenge identified by NASA is the tank fill process for pure cryogenic fluids. To date, no predictive tool can accurately estimate the pool boiling curve during this process. We aim to address this gap by first accurately predicting critical heat flux. We use both traditional machine learning and physics-assisted machine learning methods to predict critical heat flux on a large dataset of 1322 datapoints from 53 published studies with a wide range of operational conditions and surface properties. While the traditional machine learning approach used no prior knowledge in modeling, the physics-assisted machine learning approach assumes the correlation form of the Zuber instability model (Zuber, N., 1958, “On the stability of boiling heat transfer,” ASME Trans. ASME., 80(3), pp. 711–714) and predicts the multiplier for the hydrodynamic instability term to estimate the critical heat flux. Two groups of input features are compared including one with fluid-only properties and another with both fluid and solid surface properties. Various feature selection methods are employed to reduce the redundant features, and multiple machine learning models are used for modeling the dataset. Physics-assisted machine learning methods predict much better than traditional machine learning methods. The inclusion of solid properties further improves the predictions of critical heat flux across all models using physics-assisted method. Machine learning models are more stable when using physics-assisted methods compared to traditional methods. The best predictions are obtained using the extreme gradient boosting model based on the physics-assisted machine learning method resulting in a mean absolute percentage error of 8.88% which is far better than the semi-empirical correlations.

References

1.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
2.
Doherty
,
M.
,
Gaby
,
J.
,
Salerno
,
L.
, and
Sutherlin
,
S.
,
2009
, “
Cryogenic Fluid Management Technology for Moon and Mars Missions
,”
AIAA
Paper No. 2009–6532.https://ntrs.nasa.gov/api/citations/20100011002/downloads/20100011002.pdf
3.
Zuber, N., 1958, “On the Stability of Boiling Heat Transfer,”
ASME Trans. ASME
, 80(3), pp. 711–714.10.1115/1.4012484
4.
Novak Zuber June
,
B.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,”
Ph.D. thesis
, University of California, Los Angeles, CA.10.2172/4175511
5.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
, 26(3), pp.
389
399
.10.1016/0017-9310(83)90043-1
6.
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1955
,
Correlation of Maximum Heat Flux Data for Boiling of Saturated Liquids
,
Massachusetts Institute of Technology, Division of
,
Cambridge, MA
.
7.
Yagov
,
V. V.
,
2014
, “
Is a Crisis in Pool Boiling Actually a Hydrodynamic Phenomenon?
,”
Int. J. Heat Mass Transfer
,
73
, pp.
265
273
.10.1016/j.ijheatmasstransfer.2014.01.076
8.
Mudawar
,
I.
,
Howard
,
A. H.
, and
Gersey
,
C. O.
,
1997
, “
An Analytical Model for Near-Saturated Pool Boiling Critical Heat Flux on Vertical Surfaces
,”
Int. J. Heat Mass Transfer
, 40(10), pp.
2327
2339
.10.1016/S0017-9310(96)00298-0
9.
Kutateladze
,
S. S.
,
1948
, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
,
3
, pp.
10
12
.
10.
Hata
,
K.
,
Nakagawa
,
H.
,
Tatsumoto
,
H.
,
Shirai
,
Y.
,
Shiotsu
,
M.
,
2003
, “
Critical Heat Flux on a Flat Plate in a Pool of Subcooled Liquid Helium
,”
AIP Conf. Proc.
, 613(1), pp.
1460
1467
.10.1063/1.1472178
11.
Liang
,
G.
, and
Mudawar
,
I.
,
2018
, “
Pool Boiling Critical Heat Flux (CHF)–Part 2: Assessment of Models and Correlations
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1368
1383
.10.1016/j.ijheatmasstransfer.2017.09.073
12.
Li
,
J.
,
O'Neill
,
L. E.
,
Izenson
,
M. G.
, and
Kharangate
,
C. R.
,
2023
, “
Data Consolidation, Correlations Assessment, and New Correlation Development for Pool Boiling Critical Heat Flux Specific to Cryogenic Fluids
,”
Int. J. Heat Mass Transfer
,
213
, p.
124315
.10.1016/j.ijheatmasstransfer.2023.124315
13.
Qiu
,
Y.
,
Garg
,
D.
,
Zhou
,
L.
,
Kharangate
,
C. R.
,
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2020
, “
An Artificial Neural Network Model to Predict Mini/Micro-Channels Saturated Flow Boiling Heat Transfer Coefficient Based on Universal Consolidated Data
,”
Int. J. Heat Mass Transfer
,
149
, p.
119211
.10.1016/j.ijheatmasstransfer.2019.119211
14.
Qiu
,
Y.
,
Garg
,
D.
,
Kim
,
S.-M.
,
Mudawar
,
I.
, and
Kharangate
,
C. R.
,
2021
, “
Machine Learning Algorithms to Predict Flow Boiling Pressure Drop in Mini/Micro-Channels Based on Universal Consolidated Data
,”
Int. J. Heat Mass Transfer
,
178
, p.
121607
.10.1016/j.ijheatmasstransfer.2021.121607
15.
Bard
,
A.
,
Qiu
,
Y.
,
Kharangate
,
C. R.
, and
French
,
R.
,
2022
, “
Consolidated Modeling and Prediction of Heat Transfer Coefficients for Saturated Flow Boiling in Mini/Micro-Channels Using Machine Learning Methods
,”
Appl. Therm. Eng.
,
210
, p.
118305
.10.1016/j.applthermaleng.2022.118305
16.
Qiu
,
Y.
,
Vo
,
T.
,
Garg
,
D.
,
Lee
,
H.
, and
Kharangate
,
C. R.
,
2023
, “
A Systematic Approach to Optimization of ANN Model Parameters to Predict Flow Boiling Heat Transfer Coefficient in Mini/Micro-Channel Heatsinks
,”
Int. J. Heat Mass Transfer
,
202
, p.
123728
.10.1016/j.ijheatmasstransfer.2022.123728
17.
Pirnstill
,
L. M.
,
Qiu
,
Y.
,
French
,
R. H.
, and
Kharangate
,
C.
,
2023
, “
Statistical and Machine Learning Applied to the Universal Consolidated Database to Predict Heat Transfer Coefficient in Flow Condensation
,”
Numer. Heat Transfer, Part B Fundam.
, pp.
1
28
.10.1080/10407790.2023.2269307
18.
Zhou
,
L.
,
Garg
,
D.
,
Qiu
,
Y.
,
Kim
,
S.-M.
,
Mudawar
,
I.
, and
Kharangate
,
C. R.
,
2020
, “
Machine Learning Algorithms to Predict Flow Condensation Heat Transfer Coefficient in Mini/Micro-Channel Utilizing Universal Data
,”
Int. J. Heat Mass Transfer
,
162
, p.
120351
.10.1016/j.ijheatmasstransfer.2020.120351
19.
Hughes
,
M. T.
,
Fronk
,
B. M.
, and
Garimella
,
S.
,
2021
, “
Universal Condensation Heat Transfer and Pressure Drop Model and the Role of Machine Learning Techniques to Improve Predictive Capabilities
,”
Int. J. Heat Mass Transfer
,
179
, p.
121712
.10.1016/j.ijheatmasstransfer.2021.121712
20.
Shourehdeli
,
S. A.
, and
Mobini
,
K.
,
2023
, “
Machine Learning-Based Models for Frictional Pressure Drop Prediction of Condensing and Adiabatic Flow in Micro, Mini and Macro Channels Utilizing Universal Data
,”
Int. J. Air-Conditioning Refrig.
,
31
(
1
), p.
8
.10.1007/s44189-023-00025-9
21.
Suh
,
Y.
,
Bostanabad
,
R.
, and
Won
,
Y.
,
2021
, “
Deep Learning Predicts Boiling Heat Transfer
,”
Sci. Rep.
,
11
(
1
), p.
5622
.10.1038/s41598-021-85150-4
22.
Su
,
G.
,
Fukuda
,
K.
,
Morita
,
K.
,
Pidduck
,
M.
,
Jia
,
D.
,
Matsumoto
,
T.
, and
Akasaka
,
R.
,
2002
, “
Applications of Artificial Neural Network for the Prediction of Flow Boiling Curves
,”
J. Nucl. Sci. Technol.
,
39
(
11
), pp.
1190
1198
.10.1080/18811248.2002.9715310
23.
Zhang
,
Y.
,
Azman
,
A. N.
,
Xu
,
K.-W.
,
Kang
,
C.
, and
Kim
,
H.-B.
,
2020
, “
Two-Phase Flow Regime Identification Based on the Liquid-Phase Velocity Information and Machine Learning
,”
Exp. Fluids
,
61
(
10
), pp. 1−16.10.1007/s00348-020-03046-x
24.
Hobold
,
G. M.
, and
da Silva
,
A. K.
,
2018
, “
Machine Learning Classification of Boiling Regimes With Low Speed, Direct and Indirect Visualization
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1296
1309
.10.1016/j.ijheatmasstransfer.2018.04.156
25.
Banerjee
,
S.
,
Sussman
,
M.
, and
Lian
,
Y.
,
2023
, “
Dimensional Analysis in Error Reduction for Prediction of Nucleate Boiling Heat Flux by Artificial Neural Networks for Limited Dataset
,”
ASME J. Heat Mass Transfer
,
145
(
6
), p.
061602
.10.1115/1.4056539
26.
Alic
,
E.
,
Das
,
M.
, and
Kaska
,
O.
,
2019
, “
Heat Flux Estimation at Pool Boiling Processes With Computational Intelligence Methods
,”
Processes
,
7
(
5
), p.
293
.10.3390/pr7050293
27.
Sajjad
,
U.
,
Hussain
,
I.
, and
Wang
,
C.-C.
,
2021
, “
A High-Fidelity Approach to Correlate the Nucleate Pool Boiling Data of Roughened Surfaces
,”
Int. J. Multiphase Flow
,
142
, p.
103719
.10.1016/j.ijmultiphaseflow.2021.103719
28.
Ertunc
,
H. M.
,
2006
, “
Prediction of the Pool Boiling Critical Heat Flux Using Artificial Neural Network
,”
IEEE Trans. Compon. Packaging Technol.
,
29
(
4
), pp.
770
777
.10.1109/TCAPT.2006.885944
29.
Swartz
,
B.
,
Wu
,
L.
,
Zhou
,
Q.
, and
Hao
,
Q.
,
2021
, “
Machine Learning Predictions of Critical Heat Fluxes for Pillar-Modified Surfaces
,”
Int. J. Heat Mass Transfer
,
180
, p.
121744
.10.1016/j.ijheatmasstransfer.2021.121744
30.
He
,
M.
, and
Lee
,
Y.
,
2020
, “
Application of Deep Belief Network for Critical Heat Flux Prediction on Microstructure Surfaces
,”
Nucl. Technol.
,
206
(
2
), pp.
358
374
.10.1080/00295450.2019.1626177
31.
Zhao
,
X.
,
Shirvan
,
K.
,
Salko
,
R. K.
, and
Guo
,
F.
,
2020
, “
On the Prediction of Critical Heat Flux Using a Physics-Informed Machine Learning-Aided Framework
,”
Appl. Therm. Eng.
,
164
, p.
114540
.10.1016/j.applthermaleng.2019.114540
32.
Zhang
,
J.
,
Zhong
,
D.
,
Shi
,
H.
,
Meng
,
J.
, and
Chen
,
L.
,
2022
, “
Machine Learning Prediction of Critical Heat Flux on Downward Facing Surfaces
,”
Int. J. Heat Mass Transfer
,
191
, p.
122857
.10.1016/j.ijheatmasstransfer.2022.122857
33.
Tang
,
J.
,
Yu
,
S.
,
Gong
,
Z.
, and
Liu
,
H.
,
2023
, “
Machine Learning Approach for Predicting Minimum Film Boiling Temperature Considering the Surface Roughness Effect
,”
Ind. Eng. Chem. Res.
,
62
(
47
), pp.
20449
20458
.10.1021/acs.iecr.3c03513
34.
Kim
,
K. M.
,
Hurley
,
P.
, and
Duarte
,
J. P.
,
2022
, “
Physics-Informed Machine Learning-Aided Framework for Prediction of Minimum Film Boiling Temperature
,”
Int. J. Heat Mass Transfer
,
191
, p.
122839
.10.1016/j.ijheatmasstransfer.2022.122839
35.
Wei, H. M., Su, G. H., Tian, W. X., Qiu, S. Z., and Ni, W. F., 2009, “Study on the Characteristic Points of Boiling Curve by Using Wavelet Analysis and Genetic Neural Network,”
Nucl. Eng. Des.
, 239(11), pp.
2317
2325
.10.1016/j.nucengdes.2009.07.016
36.
Barathula
,
S.
,
Chaitanya
,
S. K.
, and
Srinivasan
,
K.
,
2023
, “
Evaluation of Machine Learning Models in the Classification of Pool Boiling Regimes Up to Critical Heat Flux Based on Boiling Acoustics
,”
Int. J. Heat Mass Transfer
,
201
, p.
123623
.10.1016/j.ijheatmasstransfer.2022.123623
37.
Rassoulinejad-Mousavi
,
S. M.
,
Al-Hindawi
,
F.
,
Soori
,
T.
,
Rokoni
,
A.
,
Yoon
,
H.
,
Hu
,
H.
,
Wu
,
T.
, and
Sun
,
Y.
,
2021
, “
Deep Learning Strategies for Critical Heat Flux Detection in Pool Boiling
,”
Appl. Therm. Eng.
,
190
, p.
116849
.10.1016/j.applthermaleng.2021.116849
38.
Zhu, L., Ooi, Z. J., Zhang, T., Brooks, C. S., and Pan, L., 2023, “Identification of Flow Regimes in Boiling Flow With Clustering Algorithms: An Interpretable Machine-Learning Perspective,”
Appl. Therm. Eng.
, 228, p.
120493
.10.1016/j.applthermaleng.2023.120493
39.
He
,
M.
, and
Lee
,
Y.
,
2019
, “
Revisiting Heater Size Sensitive Pool Boiling Critical Heat Flux Using Neural Network Modeling: Heater Length of the Half of the Rayleigh-Taylor Instability Wavelength Maximizes CHF
,”
Therm. Sci. Eng. Prog.
,
14
, p.
100421
.10.1016/j.tsep.2019.100421
40.
Calati
,
M.
,
Righetti
,
G.
,
Doretti
,
L.
,
Zilio
,
C.
,
Longo
,
G. A.
,
Hooman
,
K.
, and
Mancin
,
S.
,
2021
, “
Water Pool Boiling in Metal Foams: From Experimental Results to a Generalized Model Based on Artificial Neural Network
,”
Int. J. Heat Mass Transfer
,
176
, p.
121451
.10.1016/j.ijheatmasstransfer.2021.121451
41.
Moon
,
S. K.
,
Baek
,
W.-P.
, and
Chang
,
S. H.
,
1996
, “
Parametric Trends Analysis of the Critical Heat Flux Based on Artificial Neural Networks
,”
Nucl. Eng. Des.
,
163
(
1–2
), pp.
29
49
.10.1016/0029-5493(95)01178-1
42.
Khalid
,
R. Z.
,
Ullah
,
A.
,
Khan
,
A.
,
Al-Dahhan
,
M. H.
, and
Inayat
,
M. H.
,
2024
, “
Dependence of Critical Heat Flux in Vertical Flow Systems on Dimensional and Dimensionless Parameters Using Machine Learning
,”
Int. J. Heat Mass Transfer
,
225
, p.
125441
.10.1016/j.ijheatmasstransfer.2024.125441
43.
Bombardieri
,
C.
, and
Manfletti
,
C.
,
2016
, “
Influence of Wall Material on Nucleate Pool Boiling of Liquid Nitrogen
,”
Int. J. Heat Mass Transfer
,
94
, pp.
1
8
.10.1016/j.ijheatmasstransfer.2015.10.049
44.
Lin
,
Y.-T. D.
,
1981
,
Determining Boiling Curves on Different Metals by the Quenching Method
,
University of Illinois at Urbana-Champaign
, Champaign, IL.
45.
Peyayopanakul
,
W.
, and
Westwater
,
J. W.
,
1978
, “
Evaluation of the Unsteady-State Quenching Method for Determining Boiling Curves
,”
Int. J. Heat Mass Transfer
,
21
(
11
), pp.
1437
1445
.10.1016/0017-9310(78)90208-9
46.
Nishio
,
S.
, and
Chandratilleke
,
G. R.
,
1989
, “
Steady-State Pool Boiling Heat Transfer to Saturated Liquid Helium at Atmospheric Pressure
,”
JSME Int. J. Ser.
,
32
(
4
), pp.
639
645
.10.1299/jsmeb1988.32.4_639
47.
Stock
,
B. J.
,
1960
,
Observations on Transition Boiling Heat Transfer Phenomena
,
Argonne National Laboratory, Lemont, IL
.
48.
O'Hanley
,
H.
,
Coyle
,
C.
,
Buongiorno
,
J.
,
McKrell
,
T.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.10.1063/1.4813450
49.
Cummings
,
R. D.
, and
Smith
,
J. L.
,
1966
, “
Boiling Heat Transfer to Liquid Helium
,”
Pure Appl. Cryog.
, 6, pp.
85
95
.10.1016/B978-0-08-012409-4.50010-3
50.
Iwamoto
,
A.
,
Mito
,
T.
,
Takahata
,
K.
,
Yanagi
,
N.
, and
Yamamoto
,
J.
,
1996
, “
Heat Transfer From an Oxidized Large Copper Surface to Liquid Helium: Dependence on Surface Orientation and Treatment
,”
Advances in Cryogenic Engineering
,
Springer
, New York, pp.
217
224
.
51.
Pavlenko
,
A. N.
,
Kuznetsov
,
D. V.
, and
Bessmeltsev
,
V. P.
,
2021
, “
Experimental Study on Heat Transfer and Critical Heat Flux During Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings
,”
J. Eng. Thermophys.
,
30
(
3
), pp.
341
349
.10.1134/S1810232821030012
52.
Scurlock
,
R. G.
,
1995
, “
Enhanced Boiling Heat Transfer Surfaces
,”
Cryogenics
, 35(4), pp.
233
237
.10.1016/0011-2275(95)90826-2
53.
Chandratilleke
,
G. R.
, and
Nishio
,
S.
,
1988
, “
Pool Boiling Heat Transfer to Saturated Liquid Helium on Coated Surfaces
,”
J. Cryog. Superconduct. Soc. Jpn.
,
23
(
3
), pp.
128
133
.10.2221/jcsj.23.128
54.
Ashworth
,
S. P.
,
Beduz
,
C.
,
Mayne
,
J.
,
Pasek
,
A.
, and
Scurlock
,
R. G.
,
1990
, “
Evaluation of a Novel Enhanced Boiling Surface in Cryogenic Liquids
,”
Advances in Cryogenic Engineering: Part A & B
, Springer, Boston, MA, pp.
429
435
.10.1007/978-1-4613-0639-9_51
55.
Class
,
C. R.
,
DeHaan
,
J. R.
,
Piccone
,
M.
, and
Cost
,
R. B.
,
1960
, “
Boiling Heat Transfer to Liquid Hydrogen From Flat Surfaces
,”
Advances in Cryogenic Engineering
,
Springer
, New York, pp.
254
261
.
56.
Kosky
,
P. G.
,
1963
,
An Experimental Study of Nucleate Boiling in Saturated Liquid Oxygen and Nitrogen Between Subatmospheric and The Critical Pressures
,
University of California, Berkeley, CA
.
57.
Lyon
,
D. N.
,
Kosky
,
P. G.
, and
Harman
,
B. N.
,
1964
, “
Nucleate Boiling Heat Transfer Coefficients and Peak Nucleate Boiling Fluxes for Pure Liquid Nitrogen and Oxygen on Horizontal Platinum Surfaces From Below 0.5 Atmosphere to the Critical Pressures
,”
Advances in Cryogenic Engineering
,
Springer
, New York, pp.
77
87
.
58.
Kosky
,
P. G.
,
1966
,
Studies in Boiling Heat Transfer to Cryogenic Liquids
,
University of California
,
Berkeley, CA
.
59.
Sindt
,
C. F.
,
1974
, “
Heat Transfer to Slush Hydrogen
,”
Advances in Cryogenic Engineering
,
Springer
, New York, pp.
427
436
.
60.
Beduz
,
C.
,
Scurlock
,
R. G.
, and
Sousa
,
A. J.
,
1988
, “
Angular Dependence of Boiling Heat Transfer Mechanisms in Liquid Nitrogen
,”
Advances in Cryogenic Engineering
,
Springer
, New York, pp.
363
370
.
61.
Wang
,
L.
,
Li
,
Y.
,
Zhang
,
F.
,
Xie
,
F.
, and
Ma
,
Y.
,
2016
, “
Correlations for Calculating Heat Transfer of Hydrogen Pool Boiling
,”
Int. J. Hydrogen Energy
,
41
(
38
), pp.
17118
17131
.10.1016/j.ijhydene.2016.06.254
62.
Brusstar
,
M. J.
, and
Merte Jr
,
H.
,
1994
, “
Effects of Buoyancy on the Critical Heat Flux in Forced Convection
,”
J. Thermophys. Heat Transfer
,
8
(
2
), pp.
322
328
.10.2514/3.541
63.
Brusstar
,
M. J.
, and
Merte Jr
,
H.
,
1997
, “
Effects of Heater Surface Orientation on the Critical Heat Flux—II: A Model for Pool and Forced Convection Subcooled Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
17
), pp.
4021
4030
.10.1016/S0017-9310(97)00077-X
64.
Watwe
,
A. A.
,
1996
,
Measurement and Prediction of the Pool Boiling Critical Heat Flux in Highly Wetting Liquids
,
University of Minnesota
, Minneapolis, MN.
65.
Roubeau
,
P.
,
1961
,
Heat Exchanges in Nitrogen and Hydrogen Boiling Under Pressure
,
CEA Saclay
, London, UK.
66.
Sherley
,
J. E.
,
1963
, “
Nucleate Boiling Heat-Transfer Data for Liquid Hydrogen at Standard and Zero Gravity
,”
Advances in Cryogenic Engineering
,
Springer
, New York, pp.
495
500
.
67.
Graham
,
R. W.
,
Hendricks
,
R. C.
, and
Ehlers
,
R. C.
,
1965
, “
An Experimental Study of the Pool Heating of Liquid Hydrogen in the Subcritical and Supercritical Pressure Regimes Over a Range of Accelerations
,”
Adv. Cryog. Eng.
,
10
, pp.
342
352
.
68.
Lyon
,
D. N.
,
1965
, “
Boiling Heat Transfer and Peak Nucleate Boiling Fluxes in Saturated Liquid Helium Between the Ramda and Critical Temperatures
,”
Adv. Cryog. Eng.
,
10
, p.
371
.
69.
Lyon
,
D. N.
,
Jones
,
M. C.
,
Ritter
,
G. L.
,
Chiladakis
,
C. I.
, and
Kosky
,
P. G.
,
1965
, “
Peak Nucleate Boiling Fluxes for Liquid Oxygen on a Flat Horizontal Platinum Surface at Buoyancies Corresponding to Accelerations Between −0.03 and LgE
,”
AIChE J.
,
11
(
5
), pp.
773
780
.10.1002/aic.690110506
70.
Porchey
,
D. V.
,
1970
, “
An SEM Surface Study of Nucleate Pool Boiling Heat Transfer to Saturated Liquid Nitrogen Reduced Pressures From 0.1 to 0.9
,”
Ph.D. Thesis
, University of Missouri, Columbia, MO.https://scholarsmine.mst.edu/doctoral_dissertations/2039/
71.
Jergel
,
M.
, and
Stevenson
,
R.
,
1971
, “
Static Heat Transfer to Liquid Helium in Open Pools and Narrow Channels
,”
Int. J. Heat Mass Transfer
,
14
(
12
), pp.
2099
2107
.10.1016/0017-9310(71)90030-5
72.
Jergel
,
M.
, and
Stevenson
,
R.
,
1972
,
Heat Transfer To Boiling Helium From Aluminium Surfaces
,
Electrotechnical Institute
,
Bratislava
.
73.
Jergel
,
M.
, and
Stevenson
,
R.
,
1974
, “
Contribution to the Static Heat Transfer to Boiling Liquid Helium
,”
Cryogenics
,
14
(
8
), pp.
431
433
.10.1016/0011-2275(74)90203-3
74.
Akhmedov
,
F. D.
,
Grigorev
,
V. A.
, and
Dudkevic
,
A. S.
,
1974
, “
Boiling of Nitrogen at Pressures From Atmospheric to Critical
,”
Therm. Eng.
,
21
(
1
), pp.
120
121
.
75.
Swanson
,
J. L.
, and
Bowman
,
H. F.
,
1974
, “
Transient Surface Temperature Behavior in Nucleate Pool-Boiling Nitrogen
,”
International Heat Transfer Conference Digital Library
,
Begel House, Keidanrenkaikan Building, Tokyo
.
76.
Tsukamoto
,
O.
, and
Kobayashi
,
S.
,
1975
, “
Transient Heat Transfer Characteristics of Liquid Helium
,”
J. Appl. Phys.
,
46
(
3
), pp.
1359
1364
.10.1063/1.321732
77.
Ackermann
,
H.
,
Bewilogua
,
L.
,
Knöner
,
R.
,
Kretzschmar
,
B.
,
Usyugin
,
I. P.
, and
Vinzelberg
,
H.
,
1975
, “
Heat Transfer in Liquid Nitrogen—Methane Mixtures Under Pressure
,”
Cryogenics
,
15
(
11
), pp.
657
659
.10.1016/0011-2275(75)90097-1
78.
Bewilogua
,
L.
,
Knoner
,
R.
, and
Vinzelberg
,
H.
,
1975
, “
Heat Transfer in Cryogenic Liquids Under Pressure
,”
Cryogenics
, 15(3), pp.
121
125
.10.1016/0011-2275(75)90178-2
79.
Warner
,
D.
, and
Park
,
E. L.
, Jr.
,
1975
, “
Effect of Heat Transfer Surface Aging on Heat Flux in Nucleate Boiling Liquid Nitrogen
,”
Adv. Cryog. Eng.
,
20
, pp. 300−303.https://www.osti.gov/biblio/6729330
80.
Vishnev
,
I.
,
Yg
,
V.
, and
Gg
,
S.
,
1976
, “
Study of Heat Transfer in Boiling of Helium on Surfaces With Various Orientations
,” Heat Transfer−Soviet Research, Vol. 8, No. 4.
81.
Deev
,
V. I.
,
Keilin
,
V. E.
,
Kovalev
,
I. A.
,
Kondratenko
,
A. K.
, and
Petrovichev
,
V. I.
,
1977
, “
Nucleate and Film Pool Boiling Heat Transfer to Saturated Liquid Helium
,”
Cryogenics
,
17
(
10
), pp.
557
562
.10.1016/0011-2275(77)90259-4
82.
Grigoriev
,
V. A.
,
Klimenko
,
V. V.
,
Pavlov
,
Y. M.
, and
Ametistov
,
E. V.
,
1978
, “
The Influence of Some Heating Surface Properties on the Critical Heat Flux in Cryogenic Liquids Boiling
,”
Sixth International Heat Transfer Conference
,
Toronto, ON, Canada
, Aug. 7−11, pp.
215
220
.10.1615/IHTC6.3840
83.
Ibrahim
,
E. A.
,
Boom
,
R. W.
, and
McIntosh
,
G. E.
,
1978
, “
Heat Transfer to Subcooled Liquid Helium
,”
Advances in Cryogenic Engineering
,
Springer
, New York, pp.
333
339
.
84.
Tsuruga
,
H.
, and
Endoh
,
K.
,
1980
, “
Pool Boiling Heat Transfer to Saturated Liquid Helium
,”
J. Cryog. Supercond. Soc. Jpn.
,
15
(
5
), pp.
283
287
.10.2221/jcsj.15.283
85.
Verkin
,
B. I.
,
Kirichenko
,
Y. A.
,
Kozlov
,
S. M.
, and
Rusanov
,
K. V.
,
1980
, “
Heat Transfer During Pool Boiling of Subcooled Helium
,”
Proceedings Eighth International Cryogenics Engineering Conference
, June 3–6, Genova, Italy, pp.
256
260
.
86.
Ogata
,
H.
, and
Nakayama
,
W.
,
1982
, “
Heat Transfer to Boiling Helium From Machined and Chemically Treated Copper Surfaces
,” Adv. Cryog. Eng, 27, pp.
309
317
.
87.
Caspi
,
S.
,
1984
,
Heat Transfer to Subcooled He I
,
Springer
, University of California, Berkeley, CA.
88.
Kirichenko
,
Y. A.
,
Rusanov
,
K. V.
, and
Tyurina
,
E. G.
,
1988
, “
Maximum Thickness of a Two-Phase Layer During Boiling on a Flat Horizontal Surface Turned Downward
,”
J. Eng. Phys.
,
55
(
5
), pp.
1272
1274
.10.1007/BF00872625
89.
Kirichenko
,
Y. A.
,
Kozlov
,
S. M.
,
Rusanov
,
K. V.
, and
Tyurina
,
E. G.
,
1991
, “Heat Transfer Crisis During Liquid Nitrogen Cooling of High Temperature Superconductor,”
Cryogenics
, 31(11), pp.
979
984
.10.1016/0011-2275(91)90223-J
90.
Kozlov
,
S. M.
, and
Nozdrin
,
S. V.
,
1992
, “
Heat Transfer and Boundaries of Its Regimes During Hydrogen Boiling at Different Metallic Surfaces
,”
Cryogenics
,
32
, pp.
245
248
.10.1016/0011-2275(92)90154-3
91.
Ogata
,
H.
, and
Mori
,
H.
,
1993
, “
Steady State Heat Transfer in Transition Boiling of Helium on Copper Surfaces
,”
Cryogenics
,
33
(
6
), pp.
640
642
.10.1016/0011-2275(93)90123-6
92.
Chui
,
C. J.
,
Sehmbey
,
M. S.
,
Chow
,
L. C.
, and
Hahn
,
O. J.
,
1995
, “
Pool Boiling Heat Transfer From Vertical Heater Array in Liquid Nitrogen
,”
J. Thermophys. Heat Transfer
,
9
(
2
), pp.
308
313
.10.2514/3.661
93.
Iwamoto
,
A.
,
Maekawa
,
R.
, and
Mito
,
T.
,
2006
, “
Steady State Heat Transfer of an Oxidized Copper Surface in Subcooled Liquid Helium
,”
Fusion Eng. Des.
,
81
(
23–24
), pp.
2611
2615
.10.1016/j.fusengdes.2006.07.054
94.
Iwamoto
,
A.
,
Maekawa
,
R.
,
Mito
,
T.
, and
Satoh
,
S.
,
1998
, “
Heat Transfer Characteristics of Liquid Helium With Different Surface Width and Length
,”
International Cryogenic Engineering Conference
, July 14–17, Bournemouth, UK, pp.
801
804
.
95.
Shiotsu
,
M.
,
Hata
,
K.
,
Sakurai
,
A.
,
Suzawa
,
C.
,
Isojima
,
S.
, and
Sato
,
K.
,
1997
, “
Transient Heat Transfer From a Silver Sheathed High-Tc Superconducting Tape in Liquid Nitrogen
,”
Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference
,
Kitakyushu, Japan, May 20–24
, pp.
617
620
.
96.
Nguyen
,
D. N. T.
,
Chen
,
R. H.
,
Chow
,
L. C.
, and
Gu
,
C.
,
2000
, “
Effects of Heater Orientation and Confinement on Liquid Nitrogen Pool Boiling
,”
J. Thermophys. Heat Transfer
,
14
(
1
), pp.
109
111
.10.2514/2.6496
97.
Ohira
,
K.
,
2003
, “
Study of Nucleate Boiling Heat Transfer to Slush Hydrogen and Slush Nitrogen
,”
Heat Transfer Asian Res.
,
32
(
1
), pp.
13
28
.10.1002/htj.10068
98.
Duluc
,
M. C.
,
Stutz
,
B.
, and
Lallemand
,
M.
,
2004
, “
Transient Nucleate Boiling Under Stepwise Heat Generation for Highly Wetting Fluids
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5541
5553
.10.1016/j.ijheatmasstransfer.2004.04.038
99.
Shirai
,
Y.
,
Tatsumoto
,
H.
,
Shiotsu
,
M.
,
Hata
,
K.
,
Kobayashi
,
H.
,
Naruo
,
Y.
, and
Inatani
,
Y.
,
2010
, “
Boiling Heat Transfer From a Horizontal Flat Plate in a Pool of Liquid Hydrogen
,”
Cryogenics
,
50
(
6–7
), pp.
410
416
.10.1016/j.cryogenics.2010.04.001
100.
Jin
,
T.
,
Zhang
,
S. Y.
,
Tang
,
K.
, and
Huang
,
Y. Z.
,
2011
, “
Observation and Analysis of the Detachment Frequency of Coalesced Bubbles in Pool Boiling Liquid Nitrogen
,”
Cryogenics
,
51
(
9
), pp.
516
520
.10.1016/j.cryogenics.2011.06.007
101.
Balakin
,
B. V.
,
Delov
,
M. I.
,
Kutsenko
,
K. V.
,
Lavrukhin
,
A. A.
, and
Zhdaneev
,
O. V.
,
2015
, “
Heat Transfer From Ni-W Tapes in Liquid Nitrogen at Different Orientations in the Field of Gravity
,”
Cryogenics
,
65
, pp.
5
9
.10.1016/j.cryogenics.2014.11.003
102.
Chollet
,
F.
, and
Allaire
,
J. J.
,
2018
, “
Deep Learning With R. Shelter Island
,”
Manning Publ. Co. Biometrics
,
76
, pp.
361
362
.
103.
Witten
,
D.
, and
James
,
G.
,
2013
,
An Introduction to Statistical Learning With Applications in R
,
Springer Publication
, Cham, Switzerland.
104.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “NIST Standard Reference Database 23: Ref. Fluid Thermodynamic Transport Properties (REFPROP), Version,
9
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Dec. 18, 2024, https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
105.
Simon
,
N. J.
,
1992
, “
Properties of Copper and Copper Alloys at Cryogenic Temperatures
,”
NIST Monograph
,
177
, pp.
6
8
.10.2172/5340308
106.
Veres
,
H.
, “
Thermal Properties Database for Materials at Cryogenic Temperatures
,” Vol.1.
107.
Johnson
,
V. J.
,
1961
, “
A Compendium of the Properties of Materials at Low Temperatures:(Phase 1-)
,” Wright Air Development Division, Air Research and Development Command, Report No.
60–56
.https://apps.dtic.mil/sti/tr/pdf/AD0249644.pdf
108.
Duthil
,
P.
,
2015
, “
Material Properties at Low Temperature
,” arXiv preprint
arXiv:1501.07100
.10.48550/arXiv.1501.07100
109.
Touloukian
,
Y. S.
, and
Ho
,
C. Y.
,
1977
,
Thermophysical Properties of Selected Aerospace Materials. Part 2. Thermophysical Properties of Seven Materials
,
CINDAS, Purdue University
, West Lafayette, IN.
110.
Touloukian
,
Y. S.
,
1966
,
Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides
,
Purdue University, Thermophysical Propeties Research Center
, West Lafayette, IN.
111.
Bradley
,
P. E.
, and
Radebaugh
,
R.
,
2013
, “
Properties of Selected Materials at Cryogenic Temperatures
,”
NIST Publ.
,
680
, pp.
1
14
.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913059
112.
Ys
,
T.
,
1970
, “
Thermophysical Properties of Matter
,”
Therm. Radiat. Prop. Met. Elem. Alloys
,
7
, p.
872
.
113.
Powell
,
R. W.
,
Tye
,
R. P.
, and
Hickman
,
M. J.
,
1965
, “
The Thermal Conductivity of Nickel
,”
Int. J. Heat Mass Transfer
,
8
(
5
), pp.
679
688
.10.1016/0017-9310(65)90017-7
114.
Busey
,
R. H.
, and
Giauque
,
W. F.
,
1952
, “
The Heat Capacity of Nickel From 15 to 300° K. Entropy and Free Energy Functions
,”
J. Am. Chem. Soc.
,
74
(
12
), pp.
3157
3158
.10.1021/ja01132a058
115.
Ekin
,
J.
,
2006
,
Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing
,
Oxford University Press
, Oxford, UK.
116.
Weisend
,
J. G.
,
1998
,
Handbook of Cryogenic Engineering
, ” Taylor & Francis, Oxfordshire, UK.
117.
Günel
,
H. Y.
,
2008
,
High Temperature Superconducting Yba2cu3o7-x Transitation Edge Bolometers (Tebs) for Infrared Region
,
Izmir Institute of Technology
,
Turkey
.
118.
Antončík
,
F.
,
Sedmidubský
,
D.
,
Jiříčková
,
A.
,
Lojka
,
M.
,
Hlásek
,
T.
,
Růžička
,
K.
, and
Jankovský
,
O.
,
2019
, “
Thermodynamic Properties of Stoichiometric Non-Superconducting Phase Y2BaCuO5
,”
Materials
,
12
(
19
), p.
3163
.10.3390/ma12193163
119.
Jafari
,
A.
,
Seyedin
,
S. H.
, and
Haghpanahi
,
M.
,
2008
, “
Modeling of Heat Transfer and Solidification of Droplet/Substrate in Microcasting SDM Process
,”
Int. J. Eng. Sci.
, 19(5-1), pp.
187
198
.https://www.iust.ac.ir/ijieen/article-1-141-en.pdf
120.
Johnson
,
V. J.
,
1960
, “
A Compendium of the Properties of Materials at Low Temperature (Phase 1); Part II—Properties of Solids
,”
PB
,
171
, p.
679
.
121.
Cheng
,
Z.
,
Liu
,
L.
,
Xu
,
S.
,
Lu
,
M.
, and
Wang
,
X.
,
2015
, “
Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire
,”
Sci. Rep.
,
5
(
1
), p.
10718
.10.1038/srep10718
122.
Smith
,
D. R.
, and
Fickett
,
F. R.
,
1995
, “
Low-Temperature Properties of Silver
,”
J. Res. Natl. Inst. Stand Technol.
,
100
(
2
), p.
119
.10.6028/jres.100.012
123.
Van Sciver
,
S. W.
, and
Van Sciver
,
S. W.
,
2012
, “
Low-Temperature Materials Properties
,”
Helium Cryogen.
, pp.
17
58
.10.1007/978-1-4419-9979-5
124.
Instruments
,
T. A.
,
2017
, “
Sapphire Specific Heat Capacity Literature Values
,” Thermal Applications note, Report No.
TN-8A
.https://www.tainstruments.com/pdf/literature/TN8.pdf
125.
Krinner
,
S.
,
Storz
,
S.
,
Kurpiers
,
P.
,
Magnard
,
P.
,
Heinsoo
,
J.
,
Keller
,
R.
,
Lütolf
,
J.
,
Eichler
,
C.
, and
Wallraff
,
A.
,
2019
, “
Engineering Cryogenic Setups for 100-Qubit Scale Superconducting Circuit Systems
,”
EPJ Quant. Technol.
,
6
(
1
), p.
2
.10.1140/epjqt/s40507-019-0072-0
126.
Khvan
,
A. V.
,
Babkina
,
T.
,
Dinsdale
,
A. T.
,
Uspenskaya
,
I. A.
,
Fartushna
,
I. V.
,
Druzhinina
,
A. I.
,
Syzdykova
,
A. B.
,
Belov
,
M. P.
, and
Abrikosov
,
I. A.
,
2019
, “
Thermodynamic Properties of Tin: Part I Experimental Investigation, Ab-Initio Modelling of α-, β-Phase and a Thermodynamic Description for Pure Metal in Solid and Liquid State From 0 K
,”
Calphad
,
65
, pp.
50
72
.10.1016/j.calphad.2019.02.003
127.
Rosenberg
,
H. M.
,
1955
, “
The Thermal Conductivity of Metals at Low Temperatures
,”
Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci.
,
247
(
933
), pp.
441
497
.10.1098/rsta.1955.0003
128.
Burris, D. L., 2008, “Investigation of the Tribological Behavior of Polytetrafluoroethylene at Cryogenic Temperatures,”
Tribol. Trans
, 51(1), pp.
92
100
.10.1080/10402000701660618
129.
Isaacs
,
L. L.
,
1965
, “
Low‐Temperature Specific Heat of Gold, Silver, and Copper
,”
J. Chem. Phys.
,
43
(
1
), pp.
307
308
.10.1063/1.1696473
130.
White
,
G. K.
,
1953
, “
The Thermal Conductivity of Gold at Low Temperatures
,”
Proc. Phys. Soc. Sect. A
,
66
(
6
), pp.
559
564
.10.1088/0370-1298/66/6/307
131.
Pérez-Castañeda
,
T.
,
Azpeitia
,
J.
,
Hanko
,
J.
,
Fente
,
A.
,
Suderow
,
H.
, and
Ramos
,
M. A.
,
2013
, “
Low-Temperature Specific Heat of Graphite and CeSb 2: Validation of a Quasi-Adiabatic Continuous Method
,”
J. Low Temp. Phys.
,
173
(
1–2
), pp.
4
20
.10.1007/s10909-013-0884-8
132.
Woodcraft
,
A. L.
,
Barucci
,
M.
,
Hastings
,
P. R.
,
Lolli
,
L.
,
Martelli
,
V.
,
Risegari
,
L.
, and
Ventura
,
G.
,
2009
, “
Thermal Conductivity Measurements of Pitch-Bonded Graphites at Millikelvin Temperatures: Finding a Replacement for AGOT Graphite
,”
Cryogenics
,
49
(
5
), pp.
159
164
.10.1016/j.cryogenics.2008.10.024
133.
Stekhoven
,
D. J.
, and
Bühlmann
,
P.
,
2012
, “
MissForest—Non-Parametric Missing Value Imputation for Mixed-Type Data
,”
Bioinformatics
,
28
(
1
), pp.
112
118
.10.1093/bioinformatics/btr597
134.
Maheswari
,
K.
,
Packia Amutha Priya
,
P.
,
Ramkumar
,
S.
, and
Arun
,
M.
,
2018
, “
Missing Data Handling by Mean Imputation Method and Statistical Analysis of Classification Algorithm
,”
EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing: BDCC 2018
, Dec. 13−15, Coimbatore, India, pp.
137
149
.10.1007/978-3-030-19562-5_14
135.
Rana
,
S.
,
John
,
A. H.
, and
Midi
,
H.
,
2012
, “
Robust Regression Imputation for Analyzing Missing Data
,”
2012 International Conference on Statistics in Science, Business and Engineering
(
ICSSBE
), Sept. 10–12, Langkawi, Malaysia, pp.
1
4
.10.1109/ICSSBE.2012.6396621
136.
Malarvizhi
,
R.
, and
Thanamani
,
A. S.
,
2012
, “
K-Nearest Neighbor in Missing Data Imputation
,”
Int. J. Eng. Res. Dev.
,
5
(
1
), pp.
5
7
.
137.
Hong
,
S.
, and
Lynn
,
H. S.
,
2020
, “
Accuracy of Random-Forest-Based Imputation of Missing Data in the Presence of Non-Normality, Non-Linearity, and Interaction
,”
BMC Med. Res. Methodol.
,
20
(
1
), pp. 1−12.10.1186/s12874-020-01080-1
138.
Kokla, M., Virtanen, J., Kolehmainen, M., Paananen, J. and Hanhineva, K., 2019, “Random Forest-Based Imputation Outperforms Other Methods for Imputing LC-MS Metabolomics Data: A Comparative Study,”
BMC bioinformatics
, 20, pp.
1
11
.10.1186/s12859-019-3110-0
139.
Steyerberg
,
E. W.
,
Eijkemans
,
M. J. C.
, and
Habbema
,
J. D. F.
,
1999
, “
Stepwise Selection in Small Data Sets: A Simulation Study of Bias in Logistic Regression Analysis
,”
J. Clin. Epidemiol.
,
52
(
10
), pp.
935
942
.10.1016/S0895-4356(99)00103-1
140.
Fonti
,
V.
, and
Belitser
,
E.
,
2017
, “Feature Selection Using Lasso,”
VU Amsterdam Res. Paper Bus. Anal.
,
30
, pp.
1
25
.
141.
Song
,
F.
,
Guo
,
Z.
, and
Mei
,
D.
,
2010
, “
Feature Selection Using Principal Component Analysis
,”
2010 International Conference on System Science, Engineering Design and Manufacturing Informatization
, Nov. 12−14, Yichang, China, pp.
27
30
.10.1109/ICSEM.2010.14
142.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh-Taylor Instability
,”
Phys. D
,
12
(
1–3
), pp.
3
18
.10.1016/0167-2789(84)90510-4
143.
Baki
,
T.
,
2020
, “
Survey on the Nucleate Pool Boiling of Hydrogen and Its Limits
,”
J. Mech. Energy Eng.
,
4
(
2
), pp.
157
166
.10.30464/jmee.2020.4.2.157
144.
El-Genk
,
M. S.
, and
Bostanci
,
H.
,
2003
, “
Saturation Boiling of HFE-7100 From a Copper Surface, Simulating a Microelectronic Chip
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1841
1854
.10.1016/S0017-9310(02)00489-1
145.
Chang
,
J. Y.
, and
You
,
S. M.
,
1996
, “
Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72
,”
ASME. J. Heat Transfer-Trans. ASME.
, 118(4), pp.
937
943
.10.1115/1.2822592
146.
El-Genk
,
M. S.
, and
Guo
,
Z.
,
1993
, “
Transient Boiling From Inclined and Downward-Facing Surfaces in a Saturated Pool
,”
Int. J. Refrig.
,
16
(
6
), pp.
414
422
.10.1016/0140-7007(93)90058-G
147.
Kutateladze
,
S. S.
,
1959
,
Heat Transfer in Condensation and Boiling
,
US Atomic Energy Commission, Technical Information Service
, Moscow-Leningrad.
148.
Zuber
,
N.
,
1961
, “
The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids
,”
Int. Develop. Heat Transfer
,
27
, pp.
230
236
.
149.
Elkassabgi
,
Y.
, and
Lienhard
,
J. H.
,
1988
, “
Influences of Subcooling on Burnout of Horizontal Cylindrical Heaters
,”
ASME. J. Heat Transfer-Trans. ASME.
, 110(2), pp.
479
486
.10.1115/1.3250511
150.
Golobič
,
I.
, and
Bergles
,
A. E.
,
1997
, “
Effects of Heater-Side Factors on the Saturated Pool Boiling Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
43
51
.10.1016/S0894-1777(96)00170-7
151.
Bar-Cohen
,
A.
, and
McNeil
,
A.
,
1992
, “
Parametric Effects on Pool Boiling Critical Heat Fluxin Highly Wetting Liquids
,”
Proceedings of Engineering Foundation Conference on Pool and External Flow Boiling
, Santa Barbara, CA, Mar. 22−27, pp. 171−175.
152.
Tranmer
,
M.
, and
Elliot
,
M.
,
2008
, “
Multiple Linear Regression
,”
Cathie Marsh Centre Census Survey Res. (CCSR)
,
5
(
5
), pp.
1
5
.
153.
Hearst
,
M. A.
,
Dumais
,
S. T.
,
Osuna
,
E.
,
Platt
,
J.
, and
Scholkopf
,
B.
,
1998
, “
Support Vector Machines
,”
IEEE Intell. Syst. Their Appl.
,
13
(
4
), pp.
18
28
.10.1109/5254.708428
154.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
, pp.
5
32
.10.1023/A:1010933404324
155.
Chen
,
T.
,
He
,
T.
,
Benesty
,
M.
,
Khotilovich
,
V.
,
Tang
,
Y.
,
Cho
,
H.
,
Chen
,
K.
,
Mitchell
,
R.
,
Cano
,
I.
, and
Zhou
,
T.
,
2015
, “
Xgboost: Extreme Gradient Boosting
,”
R Package Version 0.4-
,
1
(
4
), pp.
1
42
.
156.
Yegnanarayana
,
B.
,
2009
,
Artificial Neural Networks
,
PHI Learning, New Delhi, India
.
157.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2003
, “
Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3755
3764
.10.1016/S0017-9310(03)00215-1
158.
Saylor
,
J. R.
,
1989
,
An Experimental Study of the Size Effect in Pool Boiling Critical Heat Flux on Square Surfaces
,
University of Minnesota
, Minneapolis, MN.
159.
Lienhard
,
J. H.
,
Dhir
,
V. K.
, and
Riherd
,
D. M.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME. J. Heat Transfer-Trans. ASME.
, 95(4), pp.
477
482
.10.1115/1.3450092
160.
Tatsumoto
,
H.
,
Shirai
,
Y.
,
Shiotsu
,
M.
,
Naruo
,
Y.
,
Kobayashi
,
H.
, and
Inatani
,
Y.
,
2015
, “
Heat Transfer Characteristics of a Horizontal Wire in Pools of Liquid and Supercritical Hydrogen
,”
J. Supercond. Nov. Magn.
,
28
(
3
), pp.
1185
1188
.10.1007/s10948-014-2706-x
161.
Ivey
,
H. J.
,
1962
,
On the Relevance of the VaporLiquid Exchange Mechanism for Subcooled Boiling Heat Transfer at High Prossure
,
Ukaea
, Winfrith, UK.
You do not currently have access to this content.