Abstract

The thermofluidic effectiveness of a microtube cold plate with sidewall modification has been disputed. This study settles the dispute by detailing how such sidewall modification—hemi-circular cavities arranged along a straight circular microtube embedded with a cold plate—enhances cooling. To this end, a series of numerical simulations for a single microtube cold plate in a practical range of Reynolds numbers (20 ≤ ReD ≤ 200) are carried out. For experimental validation, flow development and pressure drop in both reference and modified microtubes are characterized respectively by microparticle image velocimetry and pneumatic pressure measurements, while surface temperatures on both cold plates' substrates subjected to uniform heat flux are measured by infrared thermography. The results agree that the boundary layer development in each throat, a short straight coolant passage that connects successive cavities, indeed enhances the cooling in the cold plate with the wall modification. However, in contrast to its sole contribution argued previously, a non-negligible source of thermal enhancement is identified. The coolant flow approaching each throat noticeably bifurcates across the throat and cavity sidewall. Thereafter, a boundary layer develops along concave sidewalls and subsequently circulates within each cavity, generating high wall shear stresses upstream of each throat and significantly elevating local cooling. In conclusion, the local cooling both “upstream” and “in” throats plays a dominant role in enhancing the overall cooling in the cold plate with wall modification, up to 40% over the reference microtube cold plate in the Reynolds number range considered.

References

1.
Zhang
,
Z.
,
Wang
,
X.
, and
Yan
,
Y.
,
2021
, “
A Review of the State-of-the-Art in Electronic Cooling
,”
e-Prime-Adv. Electr. Eng., Electron. Energy
,
1
, p.
100009
.10.1016/j.prime.2021.100009
2.
Sohel Murshed
,
S. M.
, and
Nieto de Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.10.1016/j.rser.2017.04.112
3.
AlphaCOOL
,
2024
, “
Alphacool Eisbaer LT (Solo) – Black
,”
Alphacool International GmbH
,
Braunschweig, Germany
, accessed Aug. 7, 2024, https://shop.alphacool.com/en/shop/cpu-water-cooling/intel/12511-alphacool-eisbaer-solo-2600 rpm-black
4.
CORSAIR
,
2024
, “
H100 RGB 240 mm Liquid CPU Cooler
,”
CORSAIR COMPONENTS, Ltd.
,
Wokingham, UK
, accessed Aug. 7, 2024, https://www.corsair.com/ww/en/p/cpu-coolers/cw-9060053-ww/h100-rgb-240 mm-liquid-cpu-cooler-cw-9060053-ww
5.
Mdcomputers.in
,
2024
, “
MasterLiquid ML360 Illusion
,”
Cooler Master Technology Inc.
,
Taipei, Taiwan
, accessed Aug. 7, 2024, https://www.coolermaster.com/en-global/products/masterliquid-ml360-illusion/
6.
Ekwb
,
2024
, “
EK-Quantum Vector2 Strix RTX 3080/90 D-RGB - Nickel + Plexi
,”
EK Water Blocks
,
Komenda, Solvenia
, accessed Aug. 7, 2024, https://www.ekwb.com/shop/ek-quantum-vector2-strix-rtx-3080-90-d-rgb-nickel-plexi
7.
Liu
,
Y. Y.
,
Schekman
,
S. W.
,
Li
,
M. X.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2024
, “
Transitional Pressure Drop in a Cavitied Microchannel
,”
Phys. Rev. Fluids
,
9
(
4
), p.
044201
.10.1103/PhysRevFluids.9.044201
8.
Munson
,
B. R.
,
Rothmayer
,
A. P.
, and
Okiishi
,
T. H.
,
2012
,
Fundamentals of Fluid Mechanics
, 7th ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
400
479
.
9.
He
,
Z.
,
Yan
,
Y.
, and
Zhang
,
Z.
,
2021
, “
Thermal Management and Temperature Uniformity Enhancement of Electronic Devices by Micro Heat Sinks: A Review
,”
Energy
,
216
, p.
119223
.10.1016/j.energy.2020.119223
10.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
63
70
.10.1115/1.2429711
11.
Xia
,
G.
,
Chai
,
L.
,
Zhou
,
M.
, and
Wang
,
H.
,
2011
, “
Effects of Structural Parameters on Fluid Flow and Heat Transfer in a Microchannel With Aligned Fan-Shaped Reentrant Cavities
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
411
419
.10.1016/j.ijthermalsci.2010.08.009
12.
Chai
,
L.
,
Xia
,
G.
,
Zhou
,
M.
, and
Li
,
J.
,
2011
, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Microchannel Heat Sink With Offset Fan-Shaped Reentrant Cavities in Sidewall
,”
Int. Commun. Heat Mass Transfer
,
38
(
5
), pp.
577
584
.10.1016/j.icheatmasstransfer.2010.12.037
13.
Li
,
H.
,
Li
,
Y.
,
Huang
,
B.
, and
Xu
,
T.
,
2020
, “
Numerical Investigation on the Optimum Thermal Design of the Shape and Geometric Parameters of Microchannel Heat Exchangers With Cavities
,”
Micromachines
,
11
(
8
), p.
721
.10.3390/mi11080721
14.
Datta
,
A.
,
Debbarma
,
D.
,
Biswas
,
N.
,
Sanyal
,
D.
, and
Das
,
A. K.
,
2021
, “
The Role of Flow Structures on the Thermal Performance of Microchannels With Wall Features
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021019
.10.1115/1.4047709
15.
Huang
,
B.
,
Li
,
H.
,
Xia
,
S.
, and
Xu
,
T.
,
2020
, “
Experimental Investigation of the Flow and Heat Transfer Performance in Micro-Channel Heat Exchangers With Cavities
,”
Int. J. Heat Mass Transfer
,
159
, p.
120075
.10.1016/j.ijheatmasstransfer.2020.120075
16.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
, 3rd ed.,
Springer
, Cham, Switzerland, pp.
367
412
.
17.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
, New York, pp.
205
217
.
18.
Olsen
,
M. G.
, and
Adrian
,
R. J.
,
2000
, “
Out-of-Focus Effects on Particle Image Visibility and Correlation in Microscopic Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S166
S174
.10.1007/s003480070018
19.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Gray
,
M. H. B.
,
2000
, “
Volume Illumination for Two-Dimensional Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
11
(
6
), pp.
809
814
.10.1088/0957-0233/11/6/326
20.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
21.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
,
1998
, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
,
25
(
4
), pp.
316
319
.10.1007/s003480050235
22.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offutt
,
P. W.
,
1992
, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
,”
Exp. Fluids
,
13
(
2–3
), pp.
105
116
.10.1007/BF00218156
23.
Westerweel
,
J.
,
2008
, “
On Velocity Gradients in PIV Interrogation
,”
Exp Fluids
,
44
(
5
), pp.
831
842
.10.1007/s00348-007-0439-3
24.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S003
S012
.10.1007/s003480070002
25.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2017
,
Fluid Mechanics Fundamentals and Applications
, 4th ed.,
McGraw-Hill
,
New York
, pp.
351
359
.
26.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
Hoboken
, pp.
517
568
.
27.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
28.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2004
,
Principles Enhanced Heat Transfer
, 2nd ed.,
Garland Science
,
New York
, pp.
55
74
.
29.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
, New York, pp.
253
279
.
30.
Morini
,
G. L.
,
2008
, “
Viscous Dissipation as Scaling Effect for Liquid Flows in Microchannels (Keynote)
,”
ASME
Paper No. ICMM2005-75091.10.1115/ICMM2005-75091
31.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.10.1016/j.ijheatmasstransfer.2004.04.016
32.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Conjugated Heat Transfer in 2-Dimensional Mini and Micro Channels: Influence of Axial Conduction in the Walls
,”
ASME
Paper No. ICMM2004-2342.10.1115/ICMM2004-2342
33.
Celata
,
G. P.
,
Cumo
,
M.
,
Marconi
,
V.
,
McPhail
,
S. J.
, and
Zummo
,
G.
,
2006
, “
Microtube Liquid Single-Phase Heat Transfer in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3538
3546
.10.1016/j.ijheatmasstransfer.2006.03.004
You do not currently have access to this content.