Abstract

Diffusion-reaction phenomena occur commonly in heat and mass transfer problems. Determining the decay characteristics of such problems by solving the underlying energy/mass conservation equation is often mathematically cumbersome. In contrast, there is continued interest in simplified decay models that may offer reasonable accuracy at significantly reduced mathematical complexity. While simplified decay modeling has been presented before for pure diffusion problems, there remains a lack of similar work on diffusion-reaction problems. This work presents analysis of decay characteristics of diffusion-reaction problems using surrogate modeling, wherein the decay constant is determined using the moment matching method. Results are derived for homogeneous and two-layer Cartesian, cylindrical and spherical geometries. Under special conditions, results from this work are shown to correctly reduce to previously presented pure diffusion analysis. Good agreement with past work on a diffusion-reaction drug delivery problem is also demonstrated. Surrogate modeling using a single exponential function is shown to agree well with exact solutions. A two-term exponential model is also proposed to further reduce the error under certain conditions. This work extends surrogate decay modeling to the technologically important class of diffusion-reaction problems. Results presented here may help analyze and optimize several heat/mass transfer problems, such as drug delivery and reactor safety.

References

1.
Stakgold
,
I.
,
1985
, “
Reaction-Diffusion Problems in Chemical Engineering
,” Nonlinear Diffusion Problems: Lectures Given at the 2nd Session of the Centro Internazionale Matermatico Estivo (
CIME
), Montecatini Terme, Italy, June 10–18, pp.
119
152
.10.1007/BFb0072689
2.
Jain
,
A.
,
Parhizi
,
M.
,
Zhou
,
L.
, and
Krishnan
,
G.
,
2021
, “
Imaginary Eigenvalues in Multilayer One-Dimensional Thermal Conduction Problem With Linear Temperature-Dependent Heat Generation
,”
Int. J. Heat Mass Transfer
,
170
, p.
120993
.10.1016/j.ijheatmasstransfer.2021.120993
3.
Jain
,
A.
, and
Krishnan
,
G.
,
2024
, “
Thermal Stability of a Two-Dimensional Multilayer Diffusion-Reaction Problem
,”
Int. J. Heat Mass Transfer
,
221
, p.
125038
.10.1016/j.ijheatmasstransfer.2023.125038
4.
Yang
,
B.
, and
Shi
,
H.
,
2009
, “
A Thermal Stability Criterion for Heat Conduction in Multilayer Composite Solids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
131
(
11
), p.
111304
.10.1115/1.3153581
5.
Jain
,
A.
,
2023
, “
Analysis of a Diffusion-Reaction Heat Transfer Problem in a Finite Thickness Layer Adjoined by a Semi-Infinite Medium
,”
Int. J. Heat Mass Transfer
,
205
, p.
123919
.10.1016/j.ijheatmasstransfer.2023.123919
6.
Krishnan
,
G.
,
Parhizi
,
M.
,
Pathak
,
M.
, and
Jain
,
A.
,
2021
, “
Solution Phase Limited Diffusion Modeling in a Li-Ion Cell Subject to Concentration-Dependent Pore Wall Flux
,”
J. Electrochem. Soc.
,
168
(
9
), p.
090511
.10.1149/1945-7111/ac1cfb
7.
Jain
,
A.
,
McGinty
,
S.
,
Pontrelli
,
G.
, and
Zhou
,
L.
,
2022
, “
Theoretical Model for Diffusion-Reaction Based Drug Delivery From a Multilayer Spherical Capsule
,”
Int. J. Heat Mass Transfer
,
183
, p.
122072
.10.1016/j.ijheatmasstransfer.2021.122072
8.
Ferrara
,
A.
,
Steeneken
,
P. G.
,
Boksteen
,
B. K.
,
Heringa
,
A.
,
Scholten
,
A. J.
,
Schmitz
,
J.
, and
Hueting
,
R. J. E.
,
2015
, “
Physics-Based Stability Analysis of MOS Transistors
,”
Solid State Electron.
,
113
, pp.
28
34
.10.1016/j.sse.2015.05.010
9.
Carr
,
E. J.
,
2024
, “
Total Fraction of Drug Released From Diffusion-Controlled Delivery Systems With Binding Reactions
,”
Int. J. Heat Mass Transfer
,
229
, p.
125712
.10.1016/j.ijheatmasstransfer.2024.125712
10.
Doyle
,
M.
, and
Newman
,
J.
,
1997
, “
Analysis of Capacity–Rate Data for Lithium Batteries us- Ing Simplified Models of the Discharge Process
,”
J. Appl. Electrochem.
,
27
, pp.
846
856
.10.1023/A:1018481030499
11.
Shah
,
K.
,
Chalise
,
D.
, and
Jain
,
A.
,
2016
, “
Experimental and Theoretical Analysis of a Method to Predict Thermal Runaway in Li-Ion Cells
,”
J. Power Sources
,
330
, pp.
167
174
.10.1016/j.jpowsour.2016.08.133
12.
Mikhailov
,
M. D.
, and
Özişik
,
M. N.
,
1994
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Dover Publications
,
New York
.
13.
Carr
,
E. J.
,
2022
, “
Exponential and Weibull Models for Spherical and Spherical-Shell Diffusion-Controlled Release Systems With Semi-Absorbing Boundaries
,”
Phys. A
,
605
, p.
127985
.10.1016/j.physa.2022.127985
14.
Erban
,
R.
, and
Chapman
,
S. J.
,
2007
, “
Reactive Boundary Conditions for Stochastic Simulations of Reaction-Diffusion Processes
,”
Phys. Biol.
,
4
(
1
), pp.
16
28
.10.1088/1478-3975/4/1/003
15.
Filippini
,
L. P.
,
Simpson
,
M. J.
, and
Carr
,
E. J.
,
2023
, “
Simplified Models of Diffusion in Radially-Symmetric Geometries
,”
Phys. A
,
626
, p.
129067
.10.1016/j.physa.2023.129067
16.
Siepmann
,
J.
, and
Siepmann
,
F.
,
2012
, “
Modeling of Diffusion Controlled Drug Delivery
,”
J. Controlled Release
,
161
(
2
), pp.
351
362
.10.1016/j.jconrel.2011.10.006
17.
Arifin
,
D. Y.
,
Lee
,
L. Y.
, and
Wang
,
C. H.
,
2006
, “
Mathematical Modeling and Simulation of Drug Release From Microspheres: Implications to Drug Delivery Systems
,”
Adv. Drug Delivery Rev.
,
58
(
12–13
), pp.
1274
1325
.10.1016/j.addr.2006.09.007
18.
Andrews
,
C. J.
,
Cuttle
,
L.
, and
Simpson
,
M. J.
,
2016
, “
Quantifying the Role of Burn Temperature, Burn Duration and Skin Thickness in an In Vivo Animal Skin Model of Heat Conduction
,”
Int. J. Heat Mass Transfer
,
101
, pp.
542
549
.10.1016/j.ijheatmasstransfer.2016.05.070
19.
Simpson
,
M. J.
,
2009
, “
Depth-Averaging Errors in Reactive Transport Modeling
,”
Water Resour. Res.
,
45
(
2
), p.
W02505
.10.1029/2008WR007356
20.
Abramowitz
,
M.
, and
Stegun
,
I.
,
1964
,
Handbook of Mathematical Functions
,
United States Department of Commerce National Bureau of Standards
, Dover Publications, Mineola, NY.
You do not currently have access to this content.