Abstract

Most thermal radiation problems are analyzed in a “forward” manner, in which the aim is to predict the response of a system based on well-defined boundary conditions. In practice, however, many thermal radiation problems are inverse problems. For example, the goal of many furnace design problems is to find a configuration that realizes a particular irradiation profile on a target, while in measurement problems, transmitted or reflected radiation measured with sensors at a boundary may be used to infer the properties of matter within the boundary. Such inverse problems are often mathematically ill-posed because they may have multiple solutions or no solution at all. Consequently, analyzing these types of problems is more complex than is required for forward problems. In this review, we examine the various types and characteristics of inverse problems, outline standard inverse solution methods for them, and review the historical and contemporary literature.

References

1.
Hadamard
,
J.
,
1902
,
Sur Les Problèmes Aux Dérivées Partielles et Leur Signification Physique
,
Princeton University Bulletin
, Princeton, NJ, pp.
49
52
.
2.
Hadamard
,
J.
,
1923
,
Lectures on Cauchy's Problem in Linear Partial Differential Equations
,
Yale University Press
,
New Haven, CT
.
3.
McCormick
,
N. J.
,
1992
, “
Inverse Radiative Transfer Problems: A Review
,”
Nucl. Sci. Eng.
,
112
(
3
), pp.
185
198
.10.13182/NSE112-185
4.
Bertero
,
M.
, and
Boccacci
,
P.
,
1998
,
Introduction to Inverse Problems in Imaging
,
IOP Publishing
,
Bristol, UK
.
5.
Daun
,
K. J.
,
Ertürk
,
H.
, and
Howell
,
J. R.
,
2002
, “
Inverse Design Methods for High-Temperature Systems
,”
Arabian J. Sci. Technol.
,
27
(
2C
), pp.
3
48
.
6.
Daun
,
K. J.
,
Howell
,
J. R.
, and
Morton
,
D. P.
,
2003
, “
Design of Radiant Enclosures Using Inverse and Non-LinearProgramming Techniques
,”
Inver. Probl. Eng.
,
11
(
6
), pp.
541
560
.10.1080/1068276031000086796
7.
França
,
F. H. R.
,
Howell
,
J. R.
,
Ezekoye
,
O. A.
, and
Morales
,
J. C.
,
2002
, “
Inverse Design of Thermal Systems
,”
Advances in Heat Transfer
, Vol.
36
,
J. P.
Hartnett
, and
T. F.
Irvine
, eds.,
Academic Press
,
Waltham, MA
, pp.
1
110
.
8.
Howell
,
J. R.
,
Daun
,
K. J.
,
Ertürk
,
H.
,
Gamba
,
M.
, and
Hosseini Sarvari
,
M.
,
2003
, “
The Use of Inverse Methods for the Design and Control of Radiant Sources
,”
JSME Intl. J. Ser. B
,
46
(
4
), pp.
470
478
.10.1299/jsmeb.46.470
9.
Daun
,
K. J.
, and
Howell
,
J. R.
,
2005
, “
Inverse Design Methods for Radiative Transfer Systems
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
(
1–3
), pp.
43
60
.10.1016/j.jqsrt.2004.08.012
10.
Howell
,
J. R.
, and
Daun
,
K.
,
2008
, “
Inverse Design in Thermal Radiation Problems
,”
Inverse Problems, Design and Optimization
, Vol.
1
,
M. L.
Colaço
, and
H. R. B.
Orlande
, eds.,
E-Papers Publishing
,
Rio de Janeiro, Brazil
, pp.
15
26
.
11.
Daun
,
K. J.
,
2018
, “
Inverse Problems in Radiative Transfer
,”
Handbook of Thermal Science and Engineering
,
Springer Link
,
Cham
, pp.
1243
1292
.
12.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2006
,
Statistical and Computational Inverse Problems
,
Springer
,
New York
.
13.
Hansen
,
P. C.
,
1998
,
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
,
SIAM Publications
,
Philadelphia, PA
.
14.
Hansen
,
P. C.
,
1992
, “
Numerical Tools for Analysis and Solution of Fredholm Integral Equations of the First Kind
,”
Inverse Probl.
,
8
(
6
), pp.
849
872
.10.1088/0266-5611/8/6/005
15.
Hansen
,
P. C.
,
2010
,
Discrete Inverse Problems: Insight and Algorithms (Fundamentals of Algorithms Series)
,
SIAM Publications
,
Philadelphia, PA
.
16.
Lickes
,
M.
, and
Manolis
,
M.
,
2012
,
Fredholm Integral Equation of the First Kind: Discrete Inverse problems - Insight and Algorithms
,
YUMPU Publishing
,
Sankt Gallen, Switzerland
.
17.
Hansen
,
P. C.
,
1992
, “
Analysis of Discrete ill-posed Problems by Means of the L-Curve
,”
SIAM Rev.
,
34
(
4
), pp.
561
580
.10.1137/1034115
18.
Korolev
,
Y. M.
, and
Yagola
,
A. G.
,
2012
, “
On Inverse Problems in Partially Ordered Spaces With a Priori Information
,”
J. Inverse Ill-Posed Probl.
,
20
, pp.
567
573
.10.1515/jip-2012-0022
19.
Korolev
,
Y. M.
,
Yagola
,
A. G.
,
Johnson
,
J.
, and
Brinkerhoff
,
D.
,
2013
, “
Methods of Error Estimation in Inverse Problems on Compact Sets in Banach Lattices—Theory and Applications in Ice Sheet Modeling
,”
Inverse Problems, Design and Optimization Symposium
,
Albi, France
, June
26
28
.https://www.researchgate.net/publication/264747922_Methods_of_error_estimation_in_inverse_problems_on_compacts_sets_in_Banach_lattices_--_theory_and_applications_in_ice_sheet_modeling
20.
Howell
,
J. R.
,
Menguc
,
M. P.
,
Daun
,
K.
, and
Siegel
,
R.
,
2021
,
Thermal Radiation Heat Transfer
, 7th ed.,
CDC_Taylor and Francis
,
Boca Raton, FL
.
21.
Duan
,
S.
,
Yang
,
B.
,
Wang
,
F.
, and
Liu
,
G.
,
2021
, “
Determination of Singular Value Truncation Threshold for Regularization in Ill-Posed Problems
,”
Inverse Probl. Eng.
,
29
(
8
), pp.
1127
1157
.10.1080/17415977.2020.1832090
22.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
23.
Jones
,
M. R.
,
Curry
,
B.
,
Brewster
,
M. Q.
, and
Leong
,
K.
,
1994
, “
Inversion of Light-Scattering Measurements for Particle Size and Optical Constants: Theoretical Study
,”
Appl. Opt.
,
33
(
18
), pp.
4025
4034
.10.1364/AO.33.004025
24.
Jones
,
M. R.
,
Leong
,
K.
,
Brewster
,
M. Q.
, and
Curry
,
B.
,
1994
, “
Inversion of Light-Scattering Measurements for Particle Size and Optical Constants: Experimental Study
,”
Appl. Opt.
,
33
(
18
), pp.
4035
4041
.10.1364/AO.33.004035
25.
Tikhonov
,
A. N.
,
1943
, “
On the Stability of Inverse Problems
,”
Dokl. Akad. Nauk SSSR
,
39
(
5
), pp.
195
198
.
26.
Tikhonov
,
A. N.
,
1963
, “
Solution of Incorrectly Formulated Problems and the Regularization Method
,”
Sov. Math. Dokl.
,
4
,
1035
1038
[Engl. trans. Dokl. Akad. Nauk. SSSR,
151
,
501
504
,
1963
].
27.
Tikhonov
,
A. N.
, and
Arsenin
,
V. I.
,
1977
,
Solutions of Ill-Posed Problems
,
Scripta Series in Mathematics
,
Winston, New York
.
28.
Vogel
,
C. R.
,
2002
,
Computational Methods for Inverse Problems
,
SIAM Frontiers in Applied Mathematics Series
, Philadelphia, PA.
29.
Beckman
,
F. S.
,
1960
, “
The Solution of Linear Equations by the Conjugate Gradient Method
,”
Mathematical Methods for Digital Computers
,
A.
Ralston
, and
H. S.
Wilf
, eds.,
Wiley
,
New York
, pp.
62
72
.
30.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
The Application of an Inverse Formulation in the Design of Boundary Conditions for Transient Radiating Enclosures
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
6
), pp.
1095
1102
.10.1115/1.1513574
31.
Howell
,
J. R.
, and
Daun
,
K.
,
2021
, “
The Past and Future of the Monte Carlo Method in Thermal Radiation Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
100801
.10.1115/1.4050719
32.
Modest
,
M.
,
2003
, “
Backward Monte Carlo Simulations in Radiative Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
1
), pp.
57
62
.10.1115/1.1518491
33.
Case
,
K. M.
,
1957
, “
Transfer Problems and the Reciprocity Principle
,”
Rev. Mod. Phys.
,
29
(
4
), pp.
651
663
.10.1103/RevModPhys.29.651
34.
Dunn
,
W. L.
,
1981
, “
Inverse Monte Carlo Analysis
,”
J. Comp. Phys.
,
41
(
1
), pp.
154
166
.10.1016/0021-9991(81)90085-1
35.
Dunn
,
W. L.
,
1983
, “
Inverse Monte Carlo Solutions for Radiative Transfer in Inhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
29
(
1
), pp.
19
26
.10.1016/0022-4073(83)90141-3
36.
Daun
,
K. J.
,
Thomson
,
K. A.
, and
Liu
,
F.
,
2008
, “
Simulation of Laser-Induced Incandescence Measurements in an Anisotropically-Scattering Aerosol Through Backward Monte Carlo
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
11
), p.
112701
.10.1115/1.2955468
37.
Ma
,
C. Y.
,
Zhao
,
J. M.
,
Liu
,
L. H.
,
Zhang
,
L.
,
Li
,
X. C.
, and
Jiang
,
B. C.
,
2016
, “
GPU-Accelerated Inverse Identification of Radiative Properties of Particle Suspensions in Liquid by Monte Carlo
,”
J. Quant. Spectrosc. Radiat. Transfer
,
172
, pp.
146
159
.10.1016/j.jqsrt.2015.08.002
38.
Momoi
,
M.
,
Nakajima
,
T.
,
Irie
,
H.
, and
Okata
,
M.
,
2022
, “
Efficient Calculation of Radiative Intensity in Three-Dimensional Atmospheres Based on the Pn-IMS Truncation Method With a Backward Ray Tracing System
,”
J. Quant. Spectrosc. Radiat. Transfer
,
293
, p.
108369
.10.1016/j.jqsrt.2022.108369
39.
Oguma
,
M.
, and
Howell
,
J. R.
,
1995
, “
Solution of Two-Dimensional Blackbody Inverse Radiation by an Inverse Monte Carlo Method
,”
Proc. of the ASME-JSME Thermal Engineering Joint Conference, Leroy S. Fletcher. Ed., Lahaina, Maui, HI, Mar. 19–24, pp. 243–250
.
40.
França
,
F.
,
Morales
,
J. C.
,
Oguma
,
M.
, and
Howell
,
J. R.
,
1997
, “
Inverse Design of Engineering Systems Dominated by Radiative Transfer
,”
Radiative Transfer II:-Proceedings of Second International Symposium on Radiative Heat Trans
,
M.
Pinar Mengüç
, ed.,
Begell House
.
41.
França
,
F.
,
Morales
,
J. C.
,
Oguma
,
M.
, and
Howell
,
J. R.
,
1998
, “
Inverse Design of Thermal Systems With Participating Radiating Media
,”
Proceedings of 13th International Heat Transfer Conference
, Vol.
1
,
KyongJu, South Korea
.
42.
Zhang
,
Y. F.
,
Gicquel
,
O.
, and
Taine
,
J.
,
2012
, “
Optimized Emission-Based Reciprocity Monte Carlo Method to Speed Up Computation in Complex Systems
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
8172
8177
.10.1016/j.ijheatmasstransfer.2012.05.028
43.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2013
, “
Solution of Radiative Inverse Boundary Design Problem in a Combined Radiating-Free Convecting Furnace
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
130
136
.10.1016/j.icheatmasstransfer.2013.04.011
44.
Mosavati
,
M.
,
Kowsary
,
F.
, and
Mosavati
,
B.
,
2013
, “
A Novel, Non-Iterative Inverse Boundary Design Regularized Solution Technique Using the Backward Monte Carlo Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
4
), p.
042701
.10.1115/1.4022994
45.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2016
, “
Inverse Boundary Design Solution in a Combined Radiating-Free Convecting Furnace Filled With Participating Medium Containing Specularly Reflecting Walls
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
69
76
.10.1016/j.icheatmasstransfer.2016.04.029
46.
Kamkari
,
B.
,
Mahjoud
,
S.
, and
Darvishvand
,
L.
,
2015
, “
A Hybrid Approach Based on the Genetic Algorithm and Monte Carlo Method to Optimization 3-D Radiant Furnaces
,”
Intl. J. Adv. Des. Manuf. Technol.
,
8
(
30
), pp.
67
75
.
47.
Wei
,
L.-Y.
,
Qi
,
H.
,
Niu
,
Z.-H.
,
Ren
,
Y.-T.
, and
Ruan
,
L.-M.
,
2019
, “
Reverse Monte Carlo Coupled With Runge-Kutta Ray Tracing Method for Radiative Transfer in Graded-Index Media
,”
Infrared Phys. Technol.
,
99
, pp.
5
13
.10.1016/j.infrared.2019.04.002
48.
Wang
,
F.
,
Liu
,
D.
,
Cen
,
K-F.
,
Yan
,
J-h.
,
Huang
,
Q-X.
, and
Chi
,
Y.
,
2008
, “
Efficient Inverse Radiation Analysis of Temperature Distribution in Participating Medium Based on Backward Monte Carlo Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
12–13
), pp.
2171
2181
.10.1016/j.jqsrt.2008.03.002
49.
Lou
,
C.
,
Li
,
W.-H.
,
Zhou
,
H.-C.
, and
Salinas
,
C. T.
,
2011
, “
Experimental Investigation on Simultaneous Measurement of Temperature Distributions and Radiative Properties in an Oil-Fired Tunnel Furnace by Radiation Analysis
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
1
8
.10.1016/j.ijheatmasstransfer.2010.10.007
50.
Liu
,
D.
,
Yan
,
J.
,
Wang
,
F.
,
Huang
,
Q.
,
Chi
,
Y.
, and
Cen
,
K.
,
2012
, “
Experimental Reconstructions of Flame Temperature Distributions in Laboratory-Scale and Large-Scale Pulverized-Coal Fired Furnaces by Inverse Radiation Analysis
,”
Fuel
,
93
, pp.
397
403
.10.1016/j.fuel.2011.09.004
51.
Gao
,
B.-H.
,
Qi
,
H.
,
Yin
,
Y.-M.
,
Wei
,
L.-Y.
, and
Ren
,
Y.-T.
,
2019
, “
Fast Reconstructing Two-Dimensional Temperature Distribution in Participating Media With Different Surfaces Conditions
,”
Infrared Phys. Technol.
,
103
, p.
103080
.10.1016/j.infrared.2019.103080
52.
Gao
,
B.-H.
,
Qi
,
H.
,
Sun
,
A.-T.
,
Shi
,
J.-W.
, and
Ren
,
Y.-T.
,
2020
, “
Effective Solution of Three-Dimensional Inverse Radiation Problem in Participating Medium Based on RDFIEM
,”
Int. J. Therm. Sci.
,
156
, p.
106462
.10.1016/j.ijthermalsci.2020.106462
53.
Gao
,
B.-H.
,
Qi
,
H.
,
Jiang
,
D.-H.
,
Ren
,
Y.-T.
, and
He
,
M.-J.
,
2021
, “
Efficient Equation-Solving Integral Equation Method Based on the Radiation Distribution Factor for Calculating Radiative Transfer in 3D Anisotropic Scattering Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
275
, p.
107886
.10.1016/j.jqsrt.2021.107886
54.
Gao
,
B. H.
,
Qi
,
H.
,
Shi
,
J.-W.
,
Zhang
,
J.-Q.
,
Ren
,
Y.-T.
, and
He
,
M.-J.
,
2022
, “
An Equation-Solving Method Based on Radiation Distribution Factor for Radiative Transfer in One-Dimensional Participating Medium With Diffuse Boundaries
,”
Results Phys.
,
36
, p.
105418
.10.1016/j.rinp.2022.105418
55.
Burger
,
M.
, and
Osher
,
S. J.
,
2005
, “
A Survey on Level Set Methods for Inverse Problems and Optimal Design
,”
Eur. J. Appl. Math.
,
16
(
2
), pp.
263
301
.10.1017/S0956792505006182
56.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95 International. Conference on Neural Networks
,
IEEE
, Perth, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.10.1109/ICNN.1995.488968
57.
Qi
,
H.
,
Ruan
,
L. M.
,
Shi
,
M.
,
An
,
W.
, and
Tan
,
H.-P.
,
2008
, “
Application of Multi-Phase Particle Swarm Optimization Technique to Inverse Radiation Problem
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
3
), pp.
476
493
.10.1016/j.jqsrt.2007.07.013
58.
Kirkpatrick
,
S.
,
Gelatt
,
C. C.
, Jr.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.10.1126/science.220.4598.671
59.
Lee
,
K. H.
, and
Kim
,
K. W.
,
2015
, “
Performance Comparison of Particle Swarm Optimization and Genetic Algorithm for Inverse Surface Radiation Problem
,”
Int. J. Heat Mass Transfer
,
88
, pp.
330
337
.10.1016/j.ijheatmasstransfer.2015.04.075
60.
Lee
,
K. H.
,
Baek
,
S. W.
, and
Kim
,
K. W.
,
2008
, “
Inverse Radiation Analysis Using Repulsive Particle Swarm Optimization Algorithm
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2772
2783
.10.1016/j.ijheatmasstransfer.2007.09.037
61.
Jones
,
M. R.
,
Brewster
,
M. Q.
, and
Yamada
,
Y.
,
1996
, “
Application of a Genetic Algorithm to the Optical Characterization of Propellant Smoke
,”
AIAA J. Thermophys. Heat Transfer
,
10
(
2
), pp.
372
377
.10.2514/3.797
62.
Li
,
H. Y.
, and
Yang
,
C. Y.
,
1997
, “
A Genetic Algorithm for Inverse Radiation Problems
,”
Int. J. Heat Mass Transfer
,
40
(
7
), pp.
1545
1549
.10.1016/S0017-9310(96)00233-5
63.
Jiang
,
P.
,
Zhou
,
Q.
, and
Xinyu Shao
,
X.
,
2020
,
Surrogate Model-Based Engineering Design and Optimization
,
Springer
,
Berlin/Heidelberg, Germany
.
64.
Jasrasaria
,
D.
, and
Pyzer-Knapp
,
E. O.
,
2018
, “
Dynamic Control of Explore/Exploit Trade-Off in Bayesian Optimization
,”
Science and Information Conference
, July 10–12,
Springer
,
Cham
, Switzerland, pp.
1
15
.
65.
Frazier
,
P. I.
,
2018
, “
A Tutorial on Bayesian Optimization
,” arXiv Preprint arXiv:1807.02811.
66.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.10.1115/1.2429697
67.
Shirobokov
,
S.
,
Belavin
,
V.
,
Kagan
,
M.
,
Ustyuzhanin
,
A.
, and
Baydin
,
A. G.
,
2020
, “
Black-Box Optimization With Local Generative Surrogates
,”
Advs. Neural Inf. Process. Syst.
,
33
, pp.
14650
14662
.
68.
Rasmussen
,
C. E.
,
2003
, “
Gaussian Processes in Machine Learning
,”
Summer School on Machine Learning
,
Springer
,
Berlin, Heidelberg
, pp.
63
71
.10.48550/arXiv.2002.04632
69.
Wierstra
,
D.
,
Schaul
,
T.
,
Glasmachers
,
T.
,
Sun
,
Y.
,
Peters
,
J.
, and
Schmidhuber
,
J.
,
2014
, “
Natural Evolution Strategies
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
949
980
.
70.
Bertsimas
,
D.
, and
Tsitsiklis
,
J.
,
1993
, “
Simulated Annealing
,”
Stat. Sci.
,
8
(
1
), pp.
10
15
.10.48550/arXiv.1106.4487
71.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.10.1214/ss/1177011077
72.
Jiang
,
M.
,
Huang
,
Z.
,
Qiu
,
L.
,
Huang
,
W.
, and
Yen
,
G. G.
,
2018
, “
Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms
,”
IEEE Trans. Evol. Comput.
,
22
(
4
), pp.
501
514
.10.1109/TEVC.2017.2771451
73.
Harutunian
,
V.
,
Morales
,
J. C.
, and
Howell
,
J. R.
,
1995
, “
Radiation Exchange Within an Enclosure of Diffuse-Gray Surfaces: The Inverse Problem
,”
Proc. 1995 National Heat Transfer Conf., Vol. 10: Conjugate Heat Transfer, Inverse Problems, and Optimization; Inverse Problems in Heat Transfer; HTD-Vol. 312; W. J. Bryan, and J. V. Beck, eds., Portland, OR. Aug. 5–9
.
74.
Jones
,
M. R.
,
1999
, “
Inverse Analysis of Radiative Heat Transfer Systems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
2
), pp.
481
484
.10.1115/1.2826005
75.
Howell
,
J. R.
,
Ezekoye
,
O. A.
, and
Morales
,
J. C.
,
2000
, “
Inverse Design Model for Radiative Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
122
(
3
), pp.
492
502
.10.1115/1.1288774
76.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2004
, “
Boundary Condition Design to Heat a Moving Object at Uniform Transient Temperature Using Inverse Formulation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
619
626
.10.1115/1.1763179
77.
Kim
,
K. W.
, and
Baek
,
S. W.
,
2004
, “
Inverse Surface Radiation Analysis in an Axisymmetric Cylinder Enclosure Using a Hybrid Genetic Algorithm
,”
Num. Heat Transfer A
,
46
(
4
), pp.
367
381
.10.1080/10407780490478533
78.
Leduc
,
G.
,
Monchoux
,
F.
, and
Thellier
,
F.
,
2004
, “
Inverse Radiative Design in Human Thermal Environment
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3291
3300
.10.1016/j.ijheatmasstransfer.2004.03.005
79.
Leduc
,
G.
,
Monchoux
,
F.
, and
Thellier
,
F.
,
2004
, “
Optimal Design of Complex Human Environment by Inverse Radiative Method
,”
International Symposium on Radiative Transfer IV
,
Istanbul, Turkey
.
80.
Leduc
,
G.
,
Thellier
,
F.
,
Lacarrière
,
B.
,
Monchoux
,
F.
, and
Bonnis-Sassi
,
M.
,
2006
, “
Regulation of a Human Thermal Environment by Inverse Method
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2176
2183
.10.1016/j.applthermaleng.2006.04.005
81.
Daun
,
K. J.
,
França
,
F.
,
Larsen
,
M.
,
Leduc
,
G.
, and
Howell
,
J. R.
,
2006
, “
Comparison of Methods for Inverse Design of Radiant Enclosures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
3
), pp.
269
282
.10.1115/1.2151198
82.
França
,
F. H. R.
, and
Howell
,
J. R.
,
2006
, “
Transient Inverse Design of Radiative Enclosures for Thermal Processing of Materials
,”
Inver. Probl. Eng.
,
14
(
4
), pp.
423
436
.10.1080/17415970600573866
83.
Bayat
,
N.
,
Mehraban
,
S.
, and
Sarvari
,
S. M. H.
,
2010
, “
Inverse Boundary Design of a Radiant Furnace With Diffuse-Spectral Design
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
103
110
.10.1016/j.icheatmasstransfer.2009.07.005
84.
Hoffmann
,
R. S.
,
Seewald
,
A.
,
Schneider
,
P. S.
, and
França
,
F. H. R.
,
2010
, “
Inverse Design of Thermal Systems With Spectrally Dependent Emissivities
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
931
939
.10.1016/j.ijheatmasstransfer.2009.11.030
85.
Payan
,
S.
,
Farahmand
,
A.
, and
Hosseini Sarvari
,
S.
,
2015
, “
Inverse Boundary Design Radiation Problem With Radiative Equilibrium in Combustion Enclosures With PSO Algorithm
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
150
157
.10.1016/j.icheatmasstransfer.2015.08.009
86.
Darvishvand
,
L.
,
Kowsary
,
F.
, and
Hadi Jafar
,
P.
,
2016
, “
Optimization of 3-D Radiant Enclosures With the Objective of Uniform Thermal Conditions on 3-D Design Bodies
,”
Heat Transfer Eng.
,
37
(
1
), pp.
1
12
.10.1080/01457632.2015.1025002
87.
Darvishvand
,
L.
,
Kamkari
,
B.
, and
Kowsary
,
F.
,
2018
, “
Optimal Design Approach for Heating Irregular-Shaped Objects in Three-Dimensional Radiant Furnaces Using a Hybrid Genetic Algorithm-Artificial Neural Network Method
,”
Eng. Optim.
,
50
(
3
), pp.
452
470
.10.1080/0305215X.2017.1323889
88.
Schneider
,
P. S.
,
Mossi
,
A. C.
,
França
,
F. H. R.
,
de Sousa
,
F. L.
, and
Silva Neto
,
A. J.
,
2009
, “
Application of Inverse Analysis to Illumination Design
,”
Inver. Probl. Eng.
,
17
(
6
), pp.
737
753
.10.1080/17415970802522380
89.
Cassol
,
F.
,
Schneider
,
P. S.
,
França
,
F. H. R.
, and
Silva Neto
,
A. J.
,
2011
, “
Multi-Objective Optimization as a New Approach to Illumination Design of Interior Spaces
,”
Build. Environ.
,
46
(
2
), pp.
331
338
.10.1016/j.buildenv.2010.07.028
90.
Erturk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2000
, “
Inverse Solution of Radiative Transfer in Two-Dimensional Irregularly Shaped Enclosures
,”
ASME
Paper No. IMECE2000-1373.10.1115/IMECE2000-1373
91.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
Comparison of Three Regularized Solution Techniques in a Three-Dimensional Inverse Radiation Problem
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
307
316
.10.1016/S0022-4073(01)00212-6
92.
Hosseini Sarvari
,
S. M.
,
Howell
,
J. R.
, and
Mansouri
,
S. M. H.
,
2003
, “
Inverse Boundary Design Radiation Problem in Absorbing-Emitting Media With Irregular Geometry
,”
Num. Heat Transfer A
,
43
(
6
), pp.
565
584
.10.1080/10407780307350
93.
Hosseini Sarvari
,
S. M.
,
Howell
,
J. R.
, and
Mansouri
,
S. M. H.
,
2003
, “
Inverse Design of Three-Dimensional Enclosures With Transparent and Absorbing-Emitting Media Using an Optimization Technique
,”
Int. Commun. Heat Mass Transfer
,
30
(
2
), pp.
149
162
.10.1016/S0735-1933(03)00026-5
94.
Pourshaghaghy
,
A.
,
Pooladvand
,
K.
,
Kowsary
,
F.
, and
Karimi-Zand
,
K.
,
2006
, “
An Inverse Radiation Boundary Design Problem for an Enclosure Filled With an Emitting, Absorbing and Scattering Media
,”
Int. Commun. Heat Mass Transfer
,
33
(
3
), pp.
381
390
.10.1016/j.icheatmasstransfer.2005.12.007
95.
Safavinejad
,
A.
,
Mansouri
,
S. H.
, and
Hosseini Sarvari
,
M.
,
2005
, “
Inverse Boundary Design of 2-D Radiant Enclosures With Absorbing-Emitting Media Using Micro-Genetic Algorithm
,”
IASME Trans.
,
2
(
8
), pp.
1558
1567
.
96.
Radfar
,
N.
,
Amiri
,
H.
, and
Arabsolghar
,
A.
,
2019
, “
Application of Metaheuristic Algorithms for Solving Inverse Radiative Boundary Design Problems With Discrete Power Levels
,”
Int. J. Therm. Sci.
,
137
,
539
551
(See also Corrigendum,
138
,
626
,
2019
).10.1243/09544062JMES154
97.
Mosavati
,
B.
, and
Mosavati
,
M.
,
2022
, “
A New Approach to Solve Inverse Boundary Design of a Radiative Enclosure With Specular–Diffuse Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
1
), p.
012801
.10.1115/1.4052606
98.
França
,
F.
,
Oguma
,
M.
, and
Howell
,
J. R.
,
1998
, “
Inverse Radiative Heat Transfer With Nongray, Nonisothermal Participating Media
,”
ASME
Paper No. IMECE1998-0730.10.1115/IMECE1998-0730
99.
Mossi
,
A. C.
,
Vielmo
,
H. A.
,
França
,
F. H. R.
, and
Howell
,
J. R.
,
2008
, “
Inverse Design Involving Combined Radiative and Turbulent Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3217
3226
.10.1016/j.ijheatmasstransfer.2008.02.001
100.
Martín
,
E.
,
Meis
,
M.
,
Mourenza
,
C.
,
Rivas
,
D.
, and
Varas
,
F.
,
2012
, “
Fast Solution of Direct and Inverse Design Problems Concerning Furnace Operation Conditions in Steel Industry
,”
Appl. Therm. Eng.
,
47
, pp.
41
53
.10.1016/j.applthermaleng.2012.03.012
101.
Farzan
,
H.
,
Hosseini Sarvari
,
S. M.
, and
Mansouri
,
S. H.
,
2016
, “
Inverse Boundary Design of a Radiative Smelting Furnace With Ablative Phase Change Phenomena
,”
Appl. Therm. Eng.
,
98
, pp.
1140
1149
.10.1016/j.applthermaleng.2016.01.029
102.
França
,
F. H. R.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2001
, “
Inverse Boundary Design Combining Radiation and Convection Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
5
), pp.
884
891
.10.1115/1.1388298
103.
Hosseini Sarvari
,
S. M.
,
Howell
,
J. R.
, and
Mansouri
,
S. M. H.
,
2003
, “
Inverse Boundary Design Conduction-Radiation Problem in Irregular Two-Dimensional Domains
,”
Num. Heat Transfer A-Appl.
,
44
, pp.
1
16
.10.1080/713836377
104.
Moghadassian
,
B.
, and
Kowsary
,
F.
,
2014
, “
Inverse Boundary Design Problem of Natural Convection-Radiation in a Square Enclosure
,”
Int. J. Therm. Sci.
,
75
, pp.
116
126
.10.1016/j.ijthermalsci.2013.07.023
105.
Omidpanah
,
M.
, and
Gandjalikhan Nassab
,
S. A.
,
2019
, “
Inverse Boundary Design Problem of Combined Radiation Convection Heat Transfer in a Duct With Diffuse-Spectral Design Surface
,”
Therm. Sci.
,
23
(
1
), pp.
319
330
.10.2298/TSCI161011114O
106.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
The Use of Inverse Formulation in Design and Control of Transient Thermal Systems
,”
Proceedings of 12th International Heat Transfer Conference
,
Grenoble, France
, pp.
729
734
.
107.
Ertürk
,
H.
, and
Howell
,
J. R.
,
2010
, “
Efficient Signal Transport Model for Remote Thermometry in Full Scale Systems
,”
IEEE Trans. Semicond. Manuf.
,
23
(
1
), pp.
132
140
.10.1109/TSM.2009.2039183
108.
Gamba
,
M.
,
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
Modeling of a Radiative RTP-Type Furnace Through an Inverse Design: Mathematical Model and Experimental Results
,”
ASME
Paper No. IMECE2002-33844.10.1115/IMECE2002-33844
109.
Gamba
,
M.
,
Pavy
,
T.
, and
Howell
,
J. R.
,
2003
, “
Inverse Methods for Design and Control of Thermal Systems: Validation in a 2-D Visible Light Enclosure
,”
ASME
Paper No. IMECE2003-41665.10.1115/IMECE2003-41665
110.
Ertürk
,
H.
,
Gamba
,
M.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2008
, “
Validation of Inverse Boundary Condition Design in a Thermometry Test Bed
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
317
326
.10.1016/j.jqsrt.2007.08.029
111.
Abazid
,
M. A.
,
Lakhal
,
A.
, and
Louis
,
A. K.
,
2016
, “
Inverse Design of Anti-Reflection Coatings Using the Nonlinear Approximate Inverse
,”
Inver. Probl. Eng.
,
24
(
6
), pp.
917
935
.10.1080/17415977.2015.1077446
112.
Louis
,
A. K.
, and
Maass
,
P.
,
1990
, “
A Mollifier Method for Linear Operator Equations of the First Kind
,”
Inverse Probl.
,
6
(
3
), pp.
427
440
.10.1088/0266-5611/6/3/011
113.
Krishna
,
L. S. R.
,
Mahesh
,
N.
, and
Sateesh
,
N.
,
2017
, “
Topology Optimization Using Solid Isotropic Material With Penalization Technique for Additive Manufacturing
,”
Mater. Today: Proc.
,
4
(
2
), pp.
1414
1422
.10.1016/j.matpr.2017.01.163
114.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Intl. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.10.1002/nme.1620240207
115.
Svanberg
,
K.
,
2002
, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
SIAM J. Optim.
,
12
(
2
), pp.
555
573
.10.1137/S1052623499362822
116.
Black
,
W. Z.
,
1973
, “
Optimization of the Directional Emission From V-Groove and Rectangular Cavities
,”
ASME J. Heat Transfer-Trans. ASME
,
95
(
1
), pp.
31
36
.10.1115/1.3450000
117.
Daun
,
K. J.
,
Howell
,
J. R.
, and
Morton
,
D. P.
,
2003
, “
Geometric Optimization of Radiative Enclosures Through Nonlinear Programming
,”
Num. Heat Transfer B
,
43
(
3
), pp.
203
219
.10.1080/713836205
118.
Daun
,
K. J.
,
Howell
,
J. R.
, and
Morton
,
D. P.
,
2003
, “
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
5
), pp.
845
851
.10.1115/1.1599369
119.
Marston
,
A. J.
,
Daun
,
K. J.
, and
Collins
,
M. R.
,
2011
, “
Geometric Optimization of Radiant Enclosures Containing Specularly-Reflecting Surfaces Through quasi-Monte Carlo Simulation
,”
Num. Heat Transfer A
,
59
(
2
), pp.
81
97
.10.1080/10407782.2011.540960
120.
Farahmand
,
A.
,
Payan
,
S.
, and
Hosseini Sarvari
,
S.
,
2012
, “
Geometric Optimization of Radiative Enclosures Using PSO Algorithm
,”
Int. J. Therm. Sci.
,
60
, pp.
61
69
.10.1016/j.ijthermalsci.2012.04.024
121.
Rukolaine
,
S. A.
,
2015
, “
Shape Optimization of Radiant Enclosures With Specular-Diffuse Surfaces by Means of a Random Search and Gradient Minimization
,”
J. Quant. Spectrosc. Radiat. Transfer
,
151
, pp.
174
191
.10.1016/j.jqsrt.2014.09.012
122.
Yadav
,
R.
,
Balaji
,
C.
, and
Venkateshan
,
S.
,
2019
, “
Inverse Estimation of Number and Location of Discrete Heaters in Radiant Furnaces Using Artificial Neural Networks and Genetic Algorithm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
226
, pp.
127
137
.10.1016/j.jqsrt.2018.12.031
123.
Sepahvand
,
P.
,
Abdizadeh
,
G. R.
, and
Noori
,
S.
,
2020
, “
Inverse Design of an Irregular-Shaped Radiant Furnace Using Neural Network and a Modified Hybrid Optimization Algorithm
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100730
.10.1016/j.tsep.2020.100730
124.
Sun
,
S.
,
Qi
,
H.
,
Zhao
,
F.
,
Ruan
,
L.
, and
Li
,
B.
,
2016
, “
Inverse Geometry Design of Two-Dimensional Complex Radiative Enclosures Using Krill Herd Optimization Algorithm
,”
Appl. Therm. Eng.
,
98
, pp.
1104
1115
.10.1016/j.applthermaleng.2016.01.017
125.
Sun
,
S.
,
Wang
,
G.
, and
Chen
,
H.
,
2020
, “
Application of Improved Decentralized Fuzzy Inference Methods for Estimating the Thermal Boundary Condition of Participating Medium
,”
Int. J. Therm. Sci.
,
149
, p.
106216
.10.1016/j.ijthermalsci.2019.106216
126.
Brittes
,
R.
, and
França
,
F. H. R.
,
2013
, “
A Hybrid Inverse Method for the Thermal Design of Radiative Heating Systems
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
48
57
.10.1016/j.ijheatmasstransfer.2012.09.018
127.
Lemos
,
L. D.
,
Brittes
,
R.
, and
França
,
F. H. R.
,
2016
, “
Application of Inverse Analysis to Determine the Geometric Configuration of filament Heaters for Uniform Heating
,”
Int. J. Therm. Sci.
,
105
, pp.
1
12
.10.1016/j.ijthermalsci.2016.02.015
128.
Castro
,
D. A.
,
Kiyono
,
C. Y.
, and
Silva
,
E. C. N.
,
2015
, “
Design of Radiative Enclosures by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
88
, pp.
880
890
.10.1016/j.ijheatmasstransfer.2015.04.077
129.
Ronellenfitsch
,
H.
,
Stoop
,
N.
,
Yu
,
J.
,
Forrow
,
A.
, and
Dunkel
,
J.
,
2019
, “
Inverse Design of Discrete Mechanical Metamaterials
,”
Phys. Rev. Mater.
,
3
(
9
), p.
095201
.10.1103/PhysRevMaterials.3.095201
130.
Zhao
,
J.
,
Song
,
Y.
,
Lam
,
W. H.
,
Liu
,
W.
,
Liu
,
Y.
,
Zhang
,
Y.
, and
Wang
,
D.
,
2011
, “
Solar Radiation Transfer and Performance Analysis of an Optimum Photovoltaic/Thermal System
,”
Energy Conv. Manage
,
52
(
2
), pp.
1343
1353
.10.1016/j.enconman.2010.09.032
131.
Gagnon
,
D.
,
Dumont
,
J.
, and
Dubé
,
L. J.
,
2012
, “
Beam Shaping Using Genetically Optimized Two-Dimensional Photonic Crystals
,”
J. Opt. Soc. Amer. A
,
29
(
12
), p.
2673
.10.1364/JOSAA.29.002673
132.
Gagnon
,
D.
,
Dumont
,
J.
, and
Dubé
,
L. J.
,
2013
, “
Multiobjective Optimization in Integrated Photonics Design
,”
Opt. Lett.
,
38
(
13
), p.
2181
.10.1364/OL.38.002181
133.
Yalçin
,
R. A.
, and
Ertürk
,
H.
,
2012
, “
Optimization of Pigmented Coatings for Concentrating Solar Thermal Applications
,”
ASME
Paper No. IMECE2011-63322.10.1115/IMECE2011-63322
134.
Yalçin
,
R. A.
, and
Ertürk
,
H.
,
2018
, “
Inverse Design of Spectrally Selective Thickness Sensitive Pigmented Coatings for Solar Thermal Applications
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031006
.10.1115/1.4039276
135.
Xiao
,
T. P.
,
Cifci
,
O. S.
,
Bhargava
,
S.
,
Chen
,
H.
,
Gissibl
,
T.
,
Zhou
,
W.
,
Giessen
,
H.
,
Toussaint
,
K. C.
,
Yablonovitch
,
E.
, and
Braun
,
P. V.
,
2016
, “
Diffractive Spectral-Splitting Optical Element Designed by Adjoint-Based Electromagnetic Optimization and Fabricated by Femtosecond 3D Direct Laser Writing
,”
ACS Photonics
,
3
(
5
), pp.
886
894
.10.1021/acsphotonics.6b00066
136.
Lee
,
J. Y.
, and
Lee
,
R.-K.
,
2016
, “
Phase Diagram for Passive Electromagnetic Scatterers
,”
Opt. Express
,
24
(
6
), pp.
6480
89
.10.1364/OE.24.006480
137.
Callewaert
,
F.
,
Velev
,
V.
,
Kumar
,
P.
,
Sahakian
,
A. V.
, and
Aydin
,
K.
,
2018
, “
Inverse-Designed Broadband All-Dielectric Electromagnetic Metadevices
,”
Sci. Rep.
,
8
(
1
), pp.
1
8
.
138.
Peurifoy
,
J.
,
Shen
,
Y.
,
Jing
,
L.
,
Yang
,
Y.
,
Cano-Renteria
,
F.
,
DeLacy
,
B. G.
,
Joannopoulos
,
J. D.
,
Tegmark
,
M.
, and
Soljačić
,
M.
,
2018
, “
Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks
,”
Sci. Adv.
,
4
(
6
), pp.
1
8
.10.48550/arXiv.1706.08486
139.
Elzouka
,
M.
,
Yang
,
C.
,
Albert
,
A.
,
Prasher
,
R. S.
, and
Lubner
,
S. D.
,
2020
, “
Interpretable Forward and Inverse Design of Particle Spectral Emissivity Using Common Machine-Learning Models
,”
Cell Rep. Phys. Sci.
,
1
(
12
), p.
100259
.10.1016/j.xcrp.2020.100259
140.
Jin
,
W.
,
Molesky
,
S.
,
Lin
,
Z.
, and
Rodriguez
,
A. W.
,
2019
, “
Material Scaling and Frequency-Selective Enhancement of Near-Field Radiative Heat Transfer for Lossy Metals in Two Dimensions Via Inverse Design
,”
Phys. Rev. B
,
99
(
4
), p.
041403
.10.1103/PhysRevB.99.041403
141.
Miller
,
O. D.
,
Johnson
,
S. G.
, and
Rodriguez
,
A. W.
,
2015
, “
Shape-Independent Limits to Near-Field Radiative Heat Transfer
,”
Phys. Rev. Lett.
,
115
(
20
), p.
204302
.10.1103/PhysRevLett.115.204302
142.
Baloch
,
A. B.
,
Aly
,
S. P.
,
Hossain
,
M. I.
,
El-Mellouhi
,
F.
,
Tabet
,
N.
, and
Alharbi
,
F. H.
,
2017
, “
Full Space Device Optimization for Solar Cells
,”
Sci. Rep.
,
7
(
1
), pp.
1
14
.10.1038/s41598-017-12158-0
143.
Minemoto
,
T.
, and
Murata
,
M.
,
2015
, “
Theoretical Analysis on Effect of Band Offsets in Perovskite Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
133
, pp.
8
14
.10.1016/j.solmat.2014.10.036
144.
Altermatt
,
P. P.
,
Kiesewetter
,
T.
,
Ellmer
,
K.
, and
Tributsch
,
H.
,
2002
, “
Specifying Targets of Future Research in Photovoltaic Devices Containing Pyrite (FeS2) by Numerical Modelling
,”
Sol. Energy Matls. Sol. Cells
,
71
(
2
), pp.
181
195
.10.1016/S0927-0248(01)00053-8
145.
Ludwig
,
A.
,
2019
, “
Discovery of New Materials Using Combinatorial Synthesis and High-Throughput Characterization of Thin-Film Materials Libraries Combined With Computational Methods
,”
NPJ Comput. Mater.
,
5
(
1
), pp.
1
7
.10.1038/s41524-019-0205-0
146.
Hajimirza
,
S.
,
El Hitti
,
G.
,
Heltzel
,
A.
, and
Howell
,
J.
,
2012
, “
Specification of Micro-Nanoscale Radiative Patterns Using Inverse Analysis for Increasing Solar Panel Efficiency
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
10
), p.
102702
.10.1115/1.4006209
147.
Kaya
,
M.
, and
Hajimirza
,
S.
,
2018
, “
Surrogate Based Modeling and Optimization of Plasmonic Thin Film Organic Solar Cells
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1128
1142
.10.1016/j.ijheatmasstransfer.2017.11.044
148.
Kaya
,
M.
, and
Hajimirza
,
S.
,
2018
, “
Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity
,”
Nat. Sci. Rep.
,
8
(
1
), p.
8170
.10.1038/s41598-018-26469-3
149.
Cox
,
S. J.
, and
Dobson
,
D. C.
,
1999
, “
Maximizing Band Gaps in Two-Dimensional Photonic Crystals
,”
SIAM J. Appl. Math.
,
59
(
6
), pp.
2108
2120
.10.1137/S0036139998338455
150.
Molesky
,
S.
,
Lin
,
Z.
,
Piggott
,
A. Y.
,
Jin
,
W.
,
Vucković
,
J.
, and
Rodriguez
,
A. W.
,
2018
, “
Inverse Design in Nanophotonics
,”
Nat. Photonics
,
12
(
11
), pp.
659
670
.10.1038/s41566-018-0246-9
151.
Jensen
,
J. S.
, and
Sigmund
,
O.
,
2011
, “
Topology Optimization for Nano-Photonics
,”
Laser Photonics Rev.
,
5
(
2
), pp.
308
321
.10.1002/lpor.201000014
152.
Daun
,
K. J.
,
Thomson
,
K. A.
,
Liu
,
F.
, and
Smallwood
,
G. J.
,
2006
, “
Deconvolution of Axisymmetric Flame Properties Using Tikhonov Regularization
,”
Appl. Opt.
,
45
(
19
), pp.
4638
4646
.10.1364/AO.45.004638
153.
Hall
,
R. J.
, and
Bonczyk
,
P. A.
,
1990
, “
Sooting Flame Thermometry Using Emission/Absorption Tomography
,”
Appl. Opt.
,
29
(
31
), pp.
4590
4598
.10.1364/AO.29.004590
154.
Daun
,
K. J.
,
Grauer
,
S. J.
, and
Hadwin
,
P. J.
,
2016
, “
Chemical Species Tomography of Turbulent Flows: Discrete Ill-Posed and Rank Deficient Problems and the Use of Prior Information
,”
J. Quant. Spectrosc. Radiat. Transfer
,
172
, pp.
58
74
.10.1016/j.jqsrt.2015.09.011
155.
McCann
,
H.
,
Wright
,
P.
,
Daun
,
K.
,
Grauer
,
S. J.
,
Liu
,
C.
, and
Wagner
,
S.
,
2022
, “
Chemical Species Tomography
,”
Industrial Tomography
,
M.
Wang
, ed., 2nd ed.,
Woodhead Publishing
,
Sawston, UK
.
156.
Kudo
,
K.
,
Kuroda
,
A.
,
Eid
,
A.
,
Saito
,
T.
, and
Oguma
,
M.
,
1996
, “
Solution of the Inverse Radiative Load Problems by the Singular Value Decomposition
,”
JSME Int. J. Series B Fluids Therm. Eng., 39(4), pp. 808–814
.
157.
Linhua
,
L.
,
Heping
,
T.
, and
Qizheng
,
Y.
,
1999
, “
Inverse Radiation Problem of Temperature Field in Three-Dimensional Rectangular Furnaces
,”
Int. Commun. Heat Mass Transfer
,
26
(
2
), pp.
239
248
.10.1016/S0735-1933(99)00010-X
158.
Miguel
,
R. B.
,
Machado
,
I. M.
,
Pereira
,
F. M.
,
Pagot
,
P. R.
, and
França
,
F. H. R.
,
2016
, “
Application of Inverse Analysis to Correlate the Parameters of the Weighted-Multi-Point-Source Model to Compute Radiation From Flames
,”
Int. J. Heat Mass Transfer
,
102
, pp.
816
825
.10.1016/j.ijheatmasstransfer.2016.06.051
159.
Ren
,
T.
, and
Modest
,
M. F.
,
2016
, “
Temperature Profile Inversion From Carbon-Dioxide Spectral Intensities Through Tikhonov Regularization
,”
AIAA J. Thermophys. Heat Transfer
,
30
(
1
), pp.
211
218
.10.2514/1.T4561
160.
Ren
,
T.
,
Modest
,
M. F.
,
Fateev
,
A.
,
Sutton
,
G.
,
Zhao
,
W.
, and
Rusu
,
F.
,
2019
, “
Machine Learning Applied to Retrieval of Temperature and Concentration Distributions From Infrared Emission Measurements
,”
Appl. Energy
,
252
, p.
113448
.10.1016/j.apenergy.2019.113448
161.
Ren
,
T.
,
Li
,
H.
,
Modest
,
M. F.
, and
Zhao
,
C.
,
2021
, “
Efficient Two-Dimensional Scalar Fields Reconstruction of Laminar Flames From Infrared Hyperspectral Measurements With a Machine Learning Approach
,”
J. Quant. Spectrosc. Radiat. Transfer
,
271
, p.
107724
.10.1016/j.jqsrt.2021.107724
162.
Ren
,
T.
,
Li
,
H.
,
Modest
,
M. F.
, and
Zhao
,
C.
,
2022
, “
Machine Learning Applied to the Retrieval of Three-Dimensional Scalar Fields of Laminar Flames From Hyperspectral Measurements
,”
J. Quant. Spectrosc. Radiat. Transfer
,
279
, p.
108047
.10.1016/j.jqsrt.2021.108047
163.
Li
,
H.
,
Ren
,
T.
,
Liu
,
H.
, and
Zhao
,
C.
,
2022
, “
U-Net Applied to Retrieve Two-Dimensional Temperature and CO Concentration Fields of Laminar Diffusion Flames
,”
Fuel
,
324
, p.
124447
.10.1016/j.fuel.2022.124447
164.
Wei
,
C.
,
Schwarm
,
K. K.
,
Pineda
,
D. I.
, and
Spearrin
,
R. M.
,
2020
, “
Deep Neural Network Inversion for 3D Laser Absorption Imaging of Methane in Reacting Flows
,”
Opt. Lett.
,
45
(
8
), pp.
2447
2450
.10.1364/OL.391834
165.
Li
,
H. Y.
, and
Özişik
,
M. N.
,
1992
, “
Identification of the Temperature Profile in an Absorbing, Emitting, and Isotropically Scattering Medium by Inverse Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
4
), pp.
1060
1063
.10.1115/1.2911881
166.
Li
,
H. Y.
, and
Ozisik
,
M. N.
,
1992
, “
Estimation of the Radiation Source Term With a Conjugate-Gradient Method of Inverse Analysis
,”
J. Quant. Spectrosc. Radiat. Transfer
,
48
(
3
), pp.
237
244
.10.1016/0022-4073(92)90013-T
167.
Li
,
H. Y.
, and
Ozisik
,
M. N.
,
1993
, “
Inverse Radiation Problem for Simultaneous Estimation of Temperature Profile and Surface Reflectivity
,”
AIAA J. Thermophys. Heat Transfer
,
7
(
1
), pp.
88
93
.10.2514/3.11574
168.
Li
,
H. Y.
,
1997
, “
Inverse Radiation Problem in Two-Dimensional Rectangular Media
,”
AIAA J. Thermophys. Heat Transfer
,
11
(
4
), pp.
556
561
.10.2514/2.6279
169.
Li
,
H. Y.
,
1994
, “
Estimation of the Temperature Profile in a Cylindrical Medium by Inverse Analysis
,”
J. Quant. Spectrosc. Radiat. Transfer
,
52
(
6
), pp.
755
764
.10.1016/0022-4073(94)90041-8
170.
Li
,
H. Y.
,
1997
, “
An Inverse Source Problem in Radiative Transfer for Spherical Media
,”
Numer. Heat Transf. Part B Fundam.
,
31
(
2
), pp.
251
260
.10.1080/10407799708915108
171.
Liu
,
L. H.
,
2000
, “
Simultaneous Identification of Temperature Profile and Absorption Coefficient in One-Dimensional Semitransparent Medium by Inverse Radiation Analysis
,”
Int. Commun. Heat Mass Transfer
,
27
(
5
), pp.
635
643
.10.1016/S0735-1933(00)00145-7
172.
Liu
,
L. H.
,
Tan
,
H. P.
, and
Yu
,
Q. Z.
,
2001
, “
Inverse Radiation Problem of Sources and Emissivities in One-Dimensional Semitransparent Media
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
63
72
.10.1016/S0017-9310(00)00081-8
173.
Liu
,
L. H.
, and
Tan
,
H. P.
,
2001
, “
Inverse Radiation Problem in Three-Dimensional Complicated Geometric Systems With Opaque Boundaries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
68
(
5
), pp.
559
573
.10.1016/S0022-4073(00)00045-5
174.
Fan
,
H.
,
Wang
,
R.
,
Li
,
B.
, and
Yang
,
L.
,
2002
, “
Solution of the Inverse Radiative Load Problem in a Two-Dimensional System
,”
J. Quant. Spectrosc. Radiat. Transfer
,
74
(
1
), pp.
85
95
.10.1016/S0022-4073(01)00254-0
175.
Fan
,
H.
,
Wang
,
R.
,
Li
,
B.
, and
Yang
,
L.
,
2002
, “
Simultaneous Estimation of the Temperature and Heat Rate Distributions Within the Combustion Region by a New Inverse Radiation Analysis
,”
J. Quant. Spectrosc. Radiat. Transfer
,
74
(
1
), pp.
75
83
.10.1016/S0022-4073(01)00253-9
176.
Miller
,
A.
,
Mulholland
,
A. J.
,
Tant
,
K. M. M.
,
Pierce
,
S. G.
,
Hughes
,
B.
, and
Forbes
,
A. B.
,
2021
, “
Reconstruction of Refractive Index Maps Using Photogrammetry
,”
Inver. Probl. Eng.
,
29
(
13
), pp.
2696
2718
.10.1080/17415977.2021.1946533
177.
Shafiee
,
H.
, and
Hosseini Sarvari
,
S. M.
,
2021
, “
Inverse Estimation of Temperature-Dependent Refractive Index Profile in Conductive-Radiative Media
,”
Inver. Probl. Eng.
,
29
(
13
), pp.
2516
2533
.10.1080/17415985.2021.1932872
178.
Wei
,
L.
,
Li
,
G.
,
Song
,
M.
,
Wang
,
C.-H.
, and
Zhang
,
W.
,
2021
, “
Determination of Gradient Index Based on Laser Beam Deflection by Stochastic Particle Swarm Optimization
,”
Appl. Phys. B- Lasers Opt.
,
127
, pp.
131
145
.10.1007/s00340-021-07676-9
179.
Park
,
H. M.
, and
Yoo
,
D. H.
,
2001
, “
A Multidimensional Inverse Radiation Problem of Estimating the Strength of a Heat Source in Participating Media
,”
Int. J. Heat Mass Transfer
,
44
(
15
), pp.
2949
2956
.10.1016/S0017-9310(00)00337-9
180.
Subramaniam
,
S.
, and
Mengüç
,
M. P.
,
1991
, “
Solution of the Inverse Radiation Problem for Inhomogeneous and Anisotropically Scattering Media Using a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
,
34
(
1
), pp.
253
266
.10.1016/0017-9310(91)90192-H
181.
Mengüç
,
M. P.
, and
Manickavasagam
,
S.
,
1993
, “
Inverse Radiation Problem in Axisymmetric Cylindrical Scattering Media
,”
AIAA J. Thermophys. Heat Transfer
,
7
(
3
), pp.
479
486
.10.2514/3.443
182.
Liu
,
Y.
,
Billaud
,
Y.
,
Saury
,
D.
, and
Lemonnier
,
D.
,
2020
, “
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using an Artificial Neural Network Trained by a 2-D Axisymmetric Direct Model
,”
Num. Heat Transfer; Part A Appl.
,
77
(
10
), pp.
890
912
.10.1080/10407782.2020.1746167
183.
Liu
,
D.
,
Yan
,
J. H.
,
Wang
,
F.
,
Huang
,
Q. X.
,
Chi
,
Y.
, and
Cen
,
K. F.
,
2010
, “
Inverse Radiation Analysis of Simultaneous Estimation of Temperature Field and Radiative Properties in a Two-Dimensional Participating Medium
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4474
4481
.10.1016/j.ijheatmasstransfer.2010.06.046
184.
Fguiri
,
A.
,
Daouas
,
N.
,
Borjini
,
N.
, and
Ben Aissia
,
H.
,
2013
, “
A Theoretical Study of a Thermal Radiation Inverse Problem for the Estimation of the Optical Thickness by Means of an Optimization Technique
,”
Intl. J. Mech. Energy
,
1
(
2
), pp.
104
109
.
185.
Grauer
,
S. J.
,
Mohri
,
K.
,
Yu
,
T.
,
Liu
,
H.
, and
Cai
,
W.
,
2023
, “
Volumetric Emission Tomography for Combustion Processes
,”
Prog. Energy Combust. Sci.
,
94
, p.
101024
.10.1016/j.pecs.2022.101024
186.
Hendricks
,
T. J.
, and
Howell
,
J. R.
,
1994
, “
Inverse Radiative Analysis to Determine Spectral Radiative Properties Using Discrete Ordinates Techniques
,”
Proceedings of Tenth International Heat Transfer Conference
, Vol.
2
,
Brighton, UK
, pp.
75
80
, Paper #1-RC-14.
187.
Hendricks
,
T. J.
, and
Howell
,
J. R.
,
1996
, “
Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
1
), pp.
79
87
.10.1115/1.2824071
188.
Hendricks
,
T. J.
, and
Howell
,
J. R.
,
1996
, “
New Radiative Analysis Approach for Reticulated Porous Ceramics Using Discrete Ordinates Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
4
), pp.
911
917
.10.1115/1.2822588
189.
Sawaf
,
B.
,
Özisik
,
M. N.
, and
Jarny
,
Y.
,
1995
, “
An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic Medium
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3005
3010
.10.1016/0017-9310(95)00044-A
190.
Huang
,
C.-H.
, and
Yeh
,
C.-Y.
,
2002
, “
An Inverse Problem in Simultaneous Estimating the Biot Numbers of Heat and Moisture Transfer for a Porous Material
,”
Int. J. Heat Mass Transfer
,
45
(
23
), pp.
4643
4653
.10.1016/S0017-9310(02)00161-8
191.
Yang
,
C.-Y.
,
2000
, “
Determination of the Temperature Dependent Thermophysical Properties From Temperature Responses Measured at Medium's Boundaries
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1261
1270
.10.1016/S0017-9310(99)00142-8
192.
Berrocal Tito
,
M. J.
,
Roberty
,
N. C.
,
Silva Neto
,
A. J.
, and
Cabrejos
,
J. B.
,
2004
, “
Inverse Radiative Transfer Problems in Two-Dimensional Participating Media
,”
Inver. Probl. Eng.
,
12
(
1
), pp.
103
121
.10.1080/10682760310001597536
193.
Znaidia
,
S.
,
Mzali
,
F.
,
Sassi
,
L.
,
Mhimid
,
A.
,
Jemni
,
A.
,
Ben Nasrallah
,
S.
, and
Petit
,
D.
,
2005
, “
Inverse Problem in a Porous Medium: Estimation of Effective Thermal Properties
,”
Inver. Probl. Eng.
,
13
(
6
), pp.
581
593
.10.1080/17415970500098337
194.
Moura
,
L. M.
,
2011
, “
Inverse Thermal Radiation Problems: Estimation of Radiative Properties of Dispersed Media
,”
Thermal Measurements and Inverse Techniques
,
H. R. B.
Orlande
,
O.
Fudym
,
D.
Maillet
, and
R. M.
Cotta
, eds.,
CRC-Taylor and Francis
, Boca Raton, FL.
195.
Orlande
,
H. R. B.
,
Fudym
,
O.
,
Maillet
,
D.
, and
Cotta
,
R. M.
, eds.,
2011
,
Thermal Measurements and Inverse Techniques
,
CRC-Taylor and Francis
,
Boca Raton, FL
.
196.
Randrianalisoa
,
J.
,
Baillis
,
D.
, and
Pilon
,
L.
,
2006
, “
Improved Inverse Method for Radiative Characteristics of Closed-Cell Absorbing Porous Media
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
4
), pp.
871
883
.10.2514/1.16684
197.
Bokar
,
J. C.
,
1999
, “
The Estimation of Spatially Varying Albedo and Optical Thickness in a Radiating Slab Using Artificial Neural Networks
,”
Int. Commun. Heat Mass Transfer
,
26
(
3
), pp.
359
367
.10.1016/S0735-1933(99)00022-6
198.
Knupp
,
D. C.
,
Sacco
,
W. F.
, and
Silva Neto
,
A. J.
,
2009
, “
Radiative Properties Estimation With the Luus-Jaakola and the Particle Collision Algorithm
,”
CMES: Comput. Model. Eng. Sci.
,
54
(
2
), pp.
121
145
.
199.
Knupp
,
D. C.
, and
Silva Neto
,
A. J.
,
2013
, “
Solution of the Inverse Radiative Transfer Problem of Simultaneous Identification of the Optical Thickness and Space-Dependent Albedo Using Bayesian Inference
,”
Comput. Model. Eng. Sci.
,
96
(
5
), pp.
339
360
.10.3970/cmes.2009.054.121
200.
Eriçok
,
O. B.
, and
Ertürk
,
H.
,
2017
, “
Inverse Characterization of Nanoparticle Clusters Using Unpolarized Optical Scattering Without Ex-Situ Measurements
,”
J. Quant. Spectrosc. Radiat. Transfer
,
198
, pp.
117
129
.10.3970/cmes.2013.096.339
201.
Eriçok
,
O. B.
, and
Ertürk
,
H.
,
2018
, “
Optical Characterization Limits of Nanoparticle Aggregates at Different Wavelengths Using Approximate Bayesian Computation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
213
, pp.
113
118
.10.1016/j.jqsrt.2018.04.006
202.
Eriçok
,
O. B.
,
Cemgil
,
A. T.
, and
Ertürk
,
H.
,
2018
, “
Approximate Bayesian Computation Techniques for Optical Characterization of Nanoparticle Clusters
,”
JOSA
,
35
(
1
), pp.
88
97
.10.1364/JOSAA.35.000088
203.
Eriçok
,
O. B.
,
Özbek
,
A. K.
,
Cemgil
,
A. T.
, and
Ertürk
,
H.
,
2019
, “
Gaussian Process and Design of Experiments for Surrogate Modeling of Optical Properties of Fractal Aggregates
,”
J. Quant. Spectrosc. Radiat. Transfer
,
239
, p.
106643
.10.1016/j.jqsrt.2019.106643
204.
Świrniak
,
G.
, and
Mroczka
,
J.
,
2022
, “
Forward and Inverse Analysis for Particle Size Distribution Measurements of Disperse Samples: A Review
,”
Measurement
,
187
, p.
110256
.10.1016/j.measurement.2021.110256
205.
Carita Montero
,
R. F.
,
Roberty
,
N. C.
, and
Silva Neto
,
A. J.
,
2004
, “
Reconstruction of a Combination of the Absorption and Scattering Coefficients With a Discrete Ordinates Method Consistent With the Source-Detector System
,”
Inver. Probl. Eng.
,
12
(
1
), pp.
81
101
.10.1080/10682760310001597527
206.
Silva Neto
,
A. J.
, and
Soeiro
,
F. J. C. P.
,
2005
, “
Inverse Problem of Space Dependent Albedo Estimation Using Hybrid Optimization Methods
,”
Sixth World Congress of Structural and Multidisciplinary Optimization
,
Rio de Janeiro-RJ
,
Brazil
.
207.
Soeiro, F. J. C. P. and Silva Neto
,
A. J.
,
2005
, “
Inverse Problem of Space Dependent Albedo Estimation With Artificial Neural Networks and Hybrid Methods
,”
18th International Congress of Mechanical Engineering
,
Ouro Preto-MG
,
Brazil
, Nov.
6
11
.
208.
Stephany
,
S.
,
Becceneri
,
J. C.
,
Souto
,
R. P.
,
Campos Velho
,
H. F.
, and
Silva Neto
,
A. J.
,
2010
, “
A Pre-Regularization Scheme for the Reconstruction of a Spatial Dependent Scattering Albedo Using a Hybrid Ant Colony Optimization Implementation
,”
Appl. Math. Modell.
,
34
(
3
), pp.
561
572
.10.1016/j.apm.2009.06.006
209.
McCormick
,
N. J.
,
1993
, “
Inverse Photon Transport Methods for Biomedical Applications
,”
Inverse Problems in Engineering: Theory and Practice, N. Zabaras, K. Woodbury, and M. Raynaud, eds., American Society of Mechanical Engineers, New York, pp. 253–258
.
210.
Klose
,
A. D.
,
2010
, “
The Forward and Inverse Problem in Tissue Optics Based on the Radiative Transfer Equation: A Brief Review
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
11
), pp.
1852
1853
.10.1016/j.jqsrt.2010.01.020
211.
Zhou
,
J.
,
Chen
,
J. K.
, and
Zhang
,
Y.
,
2007
, “
Theoretical Analysis of Thermal Damage in Biological Tissues Caused by Laser Irradiation
,”
CMES: Comput. Model. Eng. Sci.
,
4
(
1
), pp.
27
39
.
212.
Kim
,
H. K.
, and
Charette
,
A.
,
2007
, “
A Sensitivity Function-Based Conjugate Gradient Method for Optical Tomography With the Frequency-Domain Equation of Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
104
(
1
), pp.
24
39
.0.3970/mcb.2007.004.027
213.
Knupp
,
D. C.
,
Naveira Cotta
,
C. P.
,
Ayres
,
J. V. C.
,
Orlande
,
H. R. B.
, and
Cotta
,
R. M.
,
2012
, “
Space-Variable Thermophysical Properties Identification in Nanocomposites Via Integral Transforms, Bayesian Inference and Infrared Thermography
,”
Inver. Probl. Eng.
,
20
(
5
), pp.
609
637
.10.1080/17415977.2012.695358
214.
Park
,
H. M.
, and
Yoon
,
T. Y.
,
2001
, “
Solution of Inverse Radiation Problems Using the Karhunen–Loève Galerkin Procedure
,”
J. Quant. Spectrosc. Radiat. Transfer
,
68
(
5
), pp.
489
506
.10.1016/S0022-4073(00)00038-8
215.
Das
,
R.
,
Mishra
,
S. C.
,
Ajith
,
M.
, and
Uppaluri
,
R.
,
2008
, “
An Inverse Analysis of a Transient 2-D Conduction–Radiation Problem Using the Lattice Boltzmann Method and the Finite Volume Method Coupled With the Genetic Algorithm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
11
), pp.
2060
2077
.10.1016/j.jqsrt.2008.01.011
216.
Hosseini Sarvari
,
S. M.
,
2015
, “
Inverse Reconstruction of Path-Length k-Distribution in a Plane-Parallel Radiative Medium
,”
Num. Heat Transfer A
,
68
(
3
), pp.
336
354
.10.1080/10407782.2014.985999
217.
Lazard
,
M.
,
André
,
S.
,
Maillet
,
D.
, and
Degiovanni
,
A.
,
2000
, “
Radiative and Conductive Heat Transfer: A Coupled Model for Parameter Estimation
,”
High Temp. High Pressures
,
32
(
1
), pp.
9
17
.10.1068/htwu311
218.
Li
,
H. Y.
,
1999
, “
Estimation of Thermal Properties in Combined Conduction and Radiation
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
565
572
.10.1016/S0017-9310(98)00146-X
219.
Liu
,
H.
,
Chen
,
X.
,
Chen
,
Z.
,
Wei
,
C.
,
Chen
,
Z.
,
Wang
,
J.
,
Duan
,
Y.
,
Ren
,
N.
,
Li
,
J.
, and
Zhang
,
X.
,
2021
, “
Optimal Experimental Design for Inverse Identification of Conductive and Radiative Properties of Participating Medium
,”
Energies
,
14
(
20
), p.
6593
.10.3390/en14206593
220.
Mallick
,
A.
,
Ranjan
,
R.
, and
Prasad
,
D. K.
,
2019
, “
Inverse Estimation of Variable Thermal Parameters in a Functionally Graded Annular Fin Using Dragon Fly Optimization
,”
Inver. Probl. Eng.
,
27
(
7
), pp.
969
986
.10.1080/17415977.2018.1510923
221.
Mostafa
,
A.
,
Abdalla
,
A.
, and
Fisher
,
T. S.
,
2022
, “
Indirect Inverse Flux Mapping of a Concentrated Solar Source Using Infrared Imaging
,”
Rev. Sci. Instrum.
,
93
(
7
), p.
073101
.
222.
Niu
,
Z.-T.
,
Qi
,
H.
,
Zhu
,
Z.-Y.
,
Li
,
K.-F.
,
Ya-Tao Ren
,
Y.-T.
, and
He
,
M.-J.
,
2022
, “
A Novel Parametric Level Set Method Coupled With Tikhonov Regularization for Tomographic Laser Absorption Reconstruction
,”
Appl. Therm. Eng.
,
201
(
Part B
), p.
117819
.10.1016/j.applthermaleng.2021.117819
223.
Pierre
,
T.
,
Krapez
,
J.-C.
,
Orlande
,
H. R. B.
,
Rodiet
,
C. L.
,
Maux
,
D.
,
Courtois
,
M.
,
Le Masson
,
P.
, and
Lamien
,
B.
,
2022
, “
Simultaneous Estimation of Temperature and Emissivity of Metals Around Their Melting Points by Deterministic and Bayesian Techniques
,”
Int. J. Heat Mass Transfer
,
183
, p.
122077
.10.1016/j.ijheatmasstransfer.2021.122077
224.
Qi
,
H.
,
Niu
,
C.-Y.
,
Shuai
,
G.
,
Ren
,
Y.-T.
, and
Ruan
,
L.-M.
,
2015
, “
Application of the Hybrid Particle Swarm Optimization Algorithms for Simultaneous Estimation of Multi-Parameters in a Transient Conduction-Radiation Problem
,”
Int. J. Heat Mass Transfer
,
83
, pp.
428
440
.10.1016/j.ijheatmasstransfer.2014.12.022
225.
Rodgers
,
C. D.
,
1976
, “
Retrieval of Atmospheric Temperature and Composition From Remote Measurements of Thermal Radiation
,”
Revs. Geophys.
,
14
(
4
), pp.
609
624
.10.1029/RG014i004p00609
226.
Rytov
,
S. M.
, 1953,
1959
,
A Theory of Electric Fluctuations and Thermal Radiation
,
USSR Academy of Sciences, Air Force Cambridge Research Center
,
Moscow, Bedford, MA
(republished).
227.
Silva Neto
,
A. J.
, and
Özişik
,
M. N.
,
1995
, “
An Inverse Problem of Simultaneous Estimation of Radiation Phase Function, Albedo and Optical Thickness
,”
J. Quant. Spectrosc. Radiat. Transfer
,
53
(
4
), pp.
397
409
.10.1016/0022-4073(95)90015-2
228.
Vargas
,
W. E.
,
Wang
,
J.
, and
Niklasson
,
G. A.
,
2021
, “
Effective Backscattering and Absorption Coefficients of Light Diffusing Materials Retrieved From Reflectance and Transmittance Spectra of Diffuse Radiation
,”
J. Mod. Opt.
,
68
(
12
), pp.
605
623
.10.1080/09500340.2021.1936244
229.
Wei
,
L.
,
Qi
,
H.
,
Li
,
G.
, and
Zhang
,
W.
,
2021
, “
Improved Teaching-Learning-Based Optimization for Estimation of Temperature-Dependent Radiative Properties of Semitransparent Media
,”
Int. J. Therm. Sci.
,
161
, p.
106694
.10.1016/j.ijthermalsci.2020.106694
230.
Yoon
,
K.-B.
,
Park
,
S.-J.
, and
Kim
,
T.-K.
,
2013
, “
Study on Inverse Estimation of Radiative Reflection Properties in Mid-Wavelength Infrared Region by Using the Repulsive Particle Swarm Optimization Algorithm
,”
Appl. Opt.
,
52
(
22
), pp.
5533
5538
.10.1364/AO.52.005533
231.
Zhang
,
X. Y.
,
Zheng
,
S.
, and
Zhou
,
H. C.
,
2016
, “
Simultaneously Reconstruction of Inhomogeneous Temperature and Radiative Properties by Radiation Image Processing
,”
Int. J. Therm. Sci.
,
107
, pp.
121
130
.
232.
Acosta
,
G.
,
Reicks
,
A.
,
Moreno
,
M.
,
Borjali
,
A.
,
Zuhlke
,
C.
, and
Ghashami
,
M.
,
2022
, “
Emissivity Prediction of Functionalized Surfaces Using Artificial Intelligence
,”
J. Quant. Spectrosc. Radiat. Transfer
,
291
, p.
108325
.10.1016/j.jqsrt.2022.108325
233.
An
,
W.
,
Ruan
,
L. M.
, and
Qi
,
H.
,
2007
, “
Inverse Radiation Problem in One-Dimensional Slab by Time-Resolved Reflected and Transmitted Signals
,”
J. Quant. Spectrosc. Radiat. Transfer
,
107
(
1
), pp.
47
60
.10.1016/j.ijthermalsci.2016.04.003
234.
Barker
,
D. G.
, and
Jones
,
M. R.
,
2003
, “
Inversion of Spectral Emission Measurements to Reconstruct the Temperature Profile Along a Blackbody Optical Fiber
,”
Inver. Probl. Eng.
,
11
(
6
), pp.
495
513
.10.1080/1068276031000098009
235.
Böckmann
,
C.
, and
Subramaniam
,
J.
,
1999
, “
The Ill-Posed Inversion of Multiwavelength Lidar Data by a Hybrid Method of Variable Projection
,” SPIE Paper No. 3816.
236.
Chow
,
L. C.
, and
Tien
,
C. S.
,
1976
, “
Inverse Techniques for Determining the Droplet Size Distributions in Clouds: Numerical Examination
,”
Appl. Opt.
,
15
(
2
), pp.
378
383
.10.1364/AO.15.000378
237.
Cui
,
M.
,
Gao
,
X.
, and
Chen
,
H.
,
2011
, “
Inverse Radiation Analysis in an Absorbing, Emitting and Non-Gray Participating Medium
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
898
905
.10.1016/j.ijthermalsci.2011.01.018
238.
Drevillon
,
J.
, and
Ben-Abdallah
,
P.
,
2007
, “
Inverse Design of Quasi Monochromatic Light Sources in the Visible Range
,”
Proceedings of Fifth International Symposium on Radiation Transfer
,
Bodrum, Turkey
.
239.
Domoto
,
G. A.
,
1974
, “
Frequency Integration for Radiative Transfer Problems Involving Homogeneous Non-Gray Gases: The Inverse Transmission Function
,”
J. Quant. Spectrosc. Radiat. Transfer
,
14
(
9
), pp.
935
942
.10.1016/0022-4073(74)90020-X
240.
França
,
F.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
1999
, “
Inverse Determination of Heat Source Distribution in Radiative Systems With Participating Media
,”
Proc. ASME Natl. Heat Transfer Conference, Albuquerque, NM. Aug. 15–17, Paper NHTC 99-93
.
241.
García-Esteban
,
J. J.
,
Bravo-Abad
,
J.
, and
Cuevas
,
J. C.
,
2021
, “
Deep Learning for the Modeling and Inverse Design of Radiative Heat Transfer
,”
Phys. Rev. Appl.
,
16
(
6
), p.
064006
.10.1103/PhysRevApplied.16.064006
242.
Gonome
,
H.
,
Nagao
,
T.
,
Takagi
,
Y.
,
Ono
,
M.
,
Kogawa
,
T.
,
Moriya
,
S.
, and
Okajima
,
J.
,
2020
, “
Protection From Thermal Radiation of Hazardous Fires: Optimizing Microscale Droplet Size in Mist Barriers Using Radiative Transfer Analysis
,”
Proc. Saf. Environ. Prot.
,
143
, pp.
114
120
.10.1016/j.psep.2020.06.039
243.
Hajimirza
,
S.
,
El Hitti
,
G.
,
Heltzel
,
A.
, and
Howell
,
J.
,
2012
, “
Using Inverse Analysis to Find Optimum Nanoscale Radiative Surface Patterns to Enhance Solar Cell Performance
,”
Int. J. Therm. Sci.
,
62
, pp.
93
102
.10.1016/j.ijthermalsci.2011.12.011
244.
Hajimirza
,
S.
, and
Howell
,
J.
,
2012
, “
Inverse Optimization of Plasmonic and Antireflective Grating in Thin Film PV Cells
,”
J. Phys. Conf. Ser.
,
369
, p.
012015
.10.1088/1742-6596/369/1/012015
245.
Hajimirza
,
S.
, and
Howell
,
J.
,
2013a
, “
Design and Analysis of Spectrally Selective Patterned Thin Film Cells
,”
Intl. J. Thermophys.
,
34
(
10
), pp.
1930
1952
.10.1007/s10765-013-1495-y
246.
Hajimirza
,
S.
, and
Howell
,
J.
,
2013b
, “
Statistical Analysis of Surface Nanopatterned Thin Film Solar Cells Obtained by Inverse Optimization
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
9
), p.
091501
.10.1115/1.4024464
247.
Hajimirza
,
S.
, and
Howell
,
J.
,
2014
, “
Computational and Experimental Study of a Multi-Layer Absorptivity Enhanced Thin Film Silicon Solar Cell
,”
J. Quant. Spectrosc. Radiat. Transfer
,
143
, pp.
56
62
.10.1016/j.jqsrt.2013.09.025
248.
Kaya
,
M.
, and
Hajimirza
,
S.
,
2017
, “
Extremely Efficient Design of Organic Thin Film Solar Cells Via Learning-Based Optimization
,”
Energies
,
10
(
12
), p.
1981
.10.3390/en10121981
249.
Khosroshahi
,
F. K.
,
Ertürk
,
H.
, and
Mengüç
,
M. P.
,
2017
, “
Optimization of Spectrally Selective Si/SiO2 Based Filters for Thermophotovoltaic Devices
,”
J. Quant. Spectrosc. Radiat. Transfer
,
197
, pp.
121
131
.
250.
Liu
,
D.
,
Wang
,
F.
,
Yan
,
J. H.
,
Huang
,
Q. X.
,
Chi
,
Y.
, and
Cen
,
C. F.
,
2008
, “
Inverse Radiation Problem of Temperature Field in Three-Dimensional Rectangular Enclosure Containing Inhomogeneous, Anisotropically Scattering Media
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3434
3441
.10.1016/j.ijheatmasstransfer.2007.11.007
251.
Lozovski
,
V.
, and
Vasyliev
,
T.
,
2019
, “
Optimization of Morphology of Nanocomposite Thin Film With Metallic Inclusions
,”
Proceedings of IEEE 39th International Conference Electronics and Nanotechnology
, Kyiv, Ukraine, Apr. 16–18, pp.
274
277
.10.1109/ELNANO.2019.8783224
252.
Mirsepahi
,
A.
,
Chen
,
L.
, and
O'Neill
,
B.
,
2013
, “
A Comparative Artificial Intelligence Approach to Inverse Heat Transfer Modeling of an Irradiative Dryer
,”
Int. Commun. Heat Mass Transfer
,
41
, pp.
19
27
.10.1016/j.jqsrt.2017.01.030
253.
Porter
,
J.
,
Larsen
,
M.
,
Barnes
,
J.
, and
Howell
,
J.
,
2006
, “
Optimization of Discrete Heater Arrays in Radiant Furnaces
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
10
), pp.
1031
1040
.10.1115/1.2345430
254.
Porter
,
J. M.
,
Larsen
,
M. E.
, and
Howell
,
J. R.
,
2005
, “
Discrete Optimization of Radiant Heaters With Simulated Annealing
,”
ASME
Paper No. HT2005-72160.10.1115/HT2005-72160
255.
Salary
,
M. M.
, and
Mosallaei
,
H.
,
2019
, “
Inverse Design of Radiative Thermal Meta-Sources Via Discrete Dipole Approximation Model
,”
J. Appl. Phys.
,
125
(
16
), p.
163107
.10.1063/1.5088148
256.
Santos
,
T. M. R.
,
Tavares
,
C. A.
,
Lemes
,
N. H. T.
,
dos Santos
,
J. P. C.
, and
Braga
,
J. P.
,
2020
, “
Improving a Tikhonov Regularization Method With a Fractional-Order Differential Operator for the Inverse Black Body Radiation Problem
,”
Inver. Probl. Eng.
,
28
(
11
), pp.
1513
1527
.10.1080/17415977.2020.1732957
257.
Smith
,
G. B.
,
2009
, “
Amplified Radiative Cooling Via Optimised Combinations of Aperture Geometry and Spectral Emittance Profiles of Surfaces and the Atmosphere
,”
Sol. Energy Mater. Sol. Cells
,
93
(
9
), pp.
1696
1701
.10.1016/j.solmat.2009.05.015
258.
Sullivan
,
J.
,
Yu
,
Z.
, and
Lee
,
J.
,
2021
, “
Optical Analysis and Optimization of Micropyramid Texture for Thermal Radiation Control
,”
Nanoscale Microscale Thermophys. Eng.
,
25
(
3–4
), pp.
137
152
.10.1080/15567265.2021.1958960
259.
Suram
,
S.
,
Bryden
,
K. M.
, and
Ashlock
,
D. A.
,
2004
, “
Quantitative Trait Loci-Based Solution of an Inverse Radiative Heat Transfer Problem
,”
IEEE Transactions on Evolutionary Computations, CEC, Congress on Evolutionary Computation
, Vol. 1,
Portland
, OR, June 19–23, pp.
427
432
.10.1109/CEC.2004.1330888
260.
Wang
,
X.
,
Yu
,
X.
,
Fu
,
S.
,
Lee
,
E.
,
Kekalo
,
K.
, and
Liu
,
J.
,
2018
, “
Design and Optimization of Nanoparticle-Pigmented Solar Selective Absorber Coatings for High-Temperature Concentrating Solar Thermal Systems
,”
J. Appl. Phys.
,
123
(
3
), p.
033104
.10.1063/1.5009252
261.
Wen
,
S.
,
Dang
,
C.
, and
Liu
,
X.
,
2022
, “
A Machine Learning Strategy for Modeling and Optimal Design of Near-Field Radiative Heat Transfer
,”
Appl. Phys. Lett.
,
121
(
7
), p.
071101
.10.1063/5.0103363
262.
Wu
,
W. J.
, and
Mulholland
,
G. P.
,
1989
, “
Two-Dimensional Inverse Radiation Heat Transfer Analysis Using Monte Carlo Techniques
,”
ASME
, New York.
263.
Wu
,
C.-Y.
, and
Wu
,
S.-H.
,
1999
, “
A New Application of Successive Approximation to Radiative Exchange Among Surfaces: Direct and Inverse Problems
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2255
2267
.10.1016/S0017-9310(98)00317-2
264.
Xie
,
Y.
,
Hu
,
W.
,
Zhou
,
X.
,
Yan
,
S.
, and
Li
,
C.
,
2022
, “
Artificial Neural Network Modeling for Predicting and Evaluating the Mean Radiant Temperature Around Buildings on Hot Summer Days
,”
Buildings
,
12
(
5
), p.
513
.10.3390/buildings12050513
265.
Yadav
,
R.
,
Tripathi
,
S.
,
Asati
,
S.
, and
Das
,
M. K.
,
2020
, “
A Combined Neural Network and Simulated Annealing Based Inverse Technique to Optimize the Heat Source Control Parameters in Heat Treatment Furnaces
,”
Inver. Probl. Eng.
,
28
(
9
), pp.
1265
1286
.10.1080/17415977.2020.1719087
266.
Yarahmadi
,
M.
,
Mahan
,
J. R.
,
Taheri
,
S.
, and
Priestley
,
K. J.
,
2019
, “
A New Approach to Inverse Boundary Design in Radiation Heat Transfer
,”
Fourth Thermal and Fluids Engineering Conference (TFEC)
,
Las Vegas, NV
, Paper TFEC-2019-27464.
267.
Zakhidov
,
R. A.
,
1966
, “
Mirror System Synthesis for Radiant Energy Concentration—An Inverse Problem
,”
Solar
, Vol.
1
,
Academic Press
,
New York
(pt. II).
268.
Chato
,
J. C.
, and
Khodadadi
,
J. M.
,
1984
, “
Optimization of Cooled Shields in Insulations
,”
ASME J. Heat Transfer-Trans. ASME
,
106
(
4
), pp.
871
875
.10.1115/1.3246766
269.
Chung
,
B. T. F.
, and
Zhang
,
B. X.
,
1991
, “
Optimization of Radiating Fin Array Including Mutual Irradiations Between Radiator Elements
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
4
), pp.
814
822
.10.1115/1.2911208
270.
Dashti
,
M. A.
, and
Safavinejad
,
A.
,
2018
, “
Optimal Search of Heat Sources Location in Conjugate Natural Convection With Surface Radiation in a Two-Dimensional Enclosure Utilizing Particle Swarm Optimization Algorithm (in Farsi)
,”
J. Solid Fluid Mech.
,
8
(
2
), pp.
177
191
.
271.
Diallo
,
M. A.
,
2020
, “
Méthodes numeriques en contrôle et problèmes inverses appliquées aux transferts de chaleur combinés rayonnement-conduction
,” Thèse de doctorate en mécanique des fluides et applications: Ecole Doctorale Physique, Chimie, Sciences de la Terre, de L'Univers et de L'Ingenieur,
Université Cheikh Anta Diop de Dakar
, Senegal.
272.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2001
, “
Inverse Design of a Three-Dimensional Furnace With Moving Design Environment
,”
ASME
Paper No. HTD-24327.10.1115/IMECE2001/HTD-24327
273.
Fedorov
,
A. G.
,
Lee
,
K. H.
, and
Viskanta
,
R. V.
,
1998
, “
Inverse Optimal Design of the Radiant Heating in Materials Processing and Manufacturing
,”
J. Mater. Eng. Perform.
,
7
(
6
), pp.
719
726
.10.22044/jsfm.2018.6577.2542
274.
Gentle
,
A. R.
,
Aguilar
,
J. L. C.
, and
Smith
,
G. B.
,
2011
, “
Optimized Cool Roofs: Integrating Albedo and Thermal Emittance With R-Value
,”
Sol. Energy Mater. Sol. Cells
,
95
(
12
), pp.
3207
3215
.10.1016/j.solmat.2011.07.018
275.
Gerencser
,
D. S.
, and
Razani
,
A.
,
1995
, “
Optimization of Radiative-Convective Arrays of Pin Fins Including Mutual Irradiation Between Fins
,”
Int. J. Heat Mass Transfer
,
38
(
5
), pp.
899
907
.10.1016/0017-9310(94)00197-4
276.
Gossard
,
D.
, and
Lartigue
,
B.
,
2013
, “
Three-Dimensional Conjugate Heat Transfer in Partitioned Enclosures: Determination of Geometrical and Thermal Properties by an Inverse Method
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
549
558
.10.1016/j.applthermaleng.2013.02.040
277.
Horsman
,
A. P.
, and
Daun
,
K. J.
,
2011
, “
Design Optimization of a Two-Stage Porous Radiant Burner Through Response Surface Modeling
,”
Num. Heat Transfer A Appl.
,
60
(
9
), pp.
727
745
.10.1080/10407782.2011.627782
278.
Lee
,
K. H.
, and
Baek
,
S. W.
,
2011
, “
Inverse Estimation of Inlet Parameters in an Axisymmetric Cylindrical Combustor With Thermal Radiation Effect
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5386
5394
.10.1016/j.ijheatmasstransfer.2011.08.004
279.
Ouchtout
,
S.
,
Rousseau
,
B.
, and
Favennec
,
Y.
,
2022
, “
Finite Element Framework for Modeling Conducto-Radiative Transfers Within Heterogeneous Media at Both Discrete and Continuous Scales
,”
Int. J. Heat Mass Transfer
,
197
, p.
123274
.10.1016/j.ijheatmasstransfer.2022.123274
280.
Ruperti
,
N. J.
, Jr.
,
Raynaud
,
M.
, and
Sacadura
,
J. F.
,
1996
, “
A Method for the Solution of the Coupled Inverse Heat Conduction-Radiation Problem
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
1
), pp.
10
17
.10.1115/1.2824022
281.
Schnurr
,
N. M.
,
Shapiro
,
A. B.
, and
Townsend
,
M. A.
,
1976
, “
Optimization of Radiating Fin Arrays With Respect to Weight
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
98
(
4
), pp.
643
648
.10.1115/1.3450613
282.
Sun
,
S.-C.
,
Qi
,
H.
,
Ren
,
Y.-T.
,
Yu
,
X.-Y.
, and
Ruan
,
L.-M.
,
2017
, “
Improved Social Spider Optimization Algorithms for Solving Inverse Radiation and Coupled Radiation–Conduction Heat Transfer Problems
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
132
146
.10.1016/j.icheatmasstransfer.2017.07.010
283.
Zhang
,
B.
,
Qi
,
H.
,
Ren
,
Y.-T.
,
Sun
,
S.-C.
, and
Ruan
,
L.-R.
,
2013
, “
Application of Homogeneous Continuous Ant Colony Optimization Algorithm to Inverse Problem of One-Dimensional Coupled Radiation and Conduction Heat Transfer
,”
Int. J. Heat Mass Transfer
,
66
, pp.
507
516
.10.1016/j.ijheatmasstransfer.2013.07.054
You do not currently have access to this content.