Abstract

The use of bacteria as a tool for machining, also known as biomachining, is a novel material removal process. This study characterizes the surface changes and relates the material removal rate to quantified bacterial concentrations resulting from machining of pure polycrystalline Cu using the bacterium Acidithiobacillus ferrooxidans. Cu blocks, polished to four levels of surface roughness, were utilized to examine the surface effects of bacterial machining. The mass change in Cu foil was measured to find the material removal rate. The most probable number method, a statistical enumeration technique, was applied to estimate bacterial concentrations. Scanning electron microscope (SEM) micrographs demonstrate that bacterial machining is anisotropic, and roughness measurements of the polycrystalline Cu samples showed a deterioration of Ra values of 1.5-2.5μm. Finally, suggestions for future work are presented that could potentially ameliorate current process problems.

1.
Liu
,
H.
,
Chen
,
B.
,
Lan
,
Y.
, and
Cheng
,
Y.
, 2004, “
Biosorption of Zn(II) and Cu(II) by the Indigenous Thiobacillus thiooxidans
,”
Chem. Eng. J.
0300-9467,
97
, pp.
195
201
.
2.
Lovley
,
D. R.
, 2003, “
Cleaning Up With Genomics: Applying Molecular Biology to Bioremediation
,”
Nat. Rev. Microbiol.
1740-1526,
1
, pp.
35
44
.
3.
Lovley
,
D. R.
,
Phillips
,
E. J. P.
,
Gorby
,
Y. A.
, and
Landa
,
E. R.
, 1991, “
Microbial Reduction of Uranium
,”
Nature (London)
0028-0836,
350
, pp.
413
416
.
4.
Liu
,
C.
,
Gorby
,
Y.
,
Zachara
,
J.
,
Fredrickson
,
J.
, and
Brown
,
C.
, 2002, “
Reduction Kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in Cultures of Dissimilatory Metal-Reducing Bacteria
,”
Biotechnol. Bioeng.
0006-3592,
80
(
6
), pp.
637
649
.
5.
Kurosaki
,
Y.
,
Matsui
,
M.
,
Nakamura
,
Y.
,
Murai
,
K.
, and
Kimura
,
T.
, 2003, “
Material Processing Using Microorganisms (An Investigation of Microbial Action on Metals)
,”
JSME Int. J., Ser. C
1340-8062,
46
, pp.
322
330
.
6.
Uno
,
Y.
,
Kaneeda
,
T.
, and
Yokomizo
,
S.
, 1993, “
Fundamental Study on Biomachining (Machining of Metals by Thiobacillus Ferrooxidans)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
59
, pp.
3199
3204
.
7.
Uno
,
Y.
,
Kaneeda
,
T.
, and
Yokomizo
,
S.
, 1996, “
Fundamental Study on Biomachining (Machining of Metals by Thiobacillus Ferrooxidans)
,”
JSME Int. J., Ser. C
1340-8062,
39
, pp.
837
842
.
8.
Uno
,
Y.
,
Kaneeda
,
T.
,
Yokomizo
,
S.
, and
Yoshimura
,
T.
, 1996, “
Fundamental Study on Electric Field Assisted Biomachining
,”
J. Soc. Precis. Eng.
0912-0289,
62
, pp.
540
543
.
9.
Kumada
,
M.
,
Kawakado
,
T.
,
Kobuchi
,
S.
,
Uno
,
Y.
,
Maeda
,
S.
, and
Miyuki
,
H.
, 2001, “
Investigations of Fine Biomachining of Metals by Using Microbially-Influenced Corrosion Differences Between Steel and Copper in Metal Biomachining by Using Thiobacillus Ferrooxidans
,”
Zairyo? to Kankyo?
0917-0480,
50
, pp.
411
417
.
10.
Zhang
,
D.
, and
Li
,
Y.
, 1998, “
Possibility of Biological Micromachining Used for Metal Removal
,”
Sci. China, Ser. C: Life Sci.
1006-9305,
41
, pp.
151
156
.
11.
Zhang
,
D.
, and
Li
,
Y.
, 1999, “
Studies on Kinetics and Thermodynamics of Biomachining Pure Copper
,”
Sci. China, Ser. C: Life Sci.
1006-9305,
42
, pp.
57
62
.
12.
Ting
,
Y. P.
,
Kumar
,
A. S.
,
Rahman
,
M.
, and
Chia
,
B. K.
, 2000, “
Innovative Use of Thiobacillus ferrooxidans for the Biological Machining of Metals
,”
Acta Biotechnol.
0138-4988,
20
(
2
), pp.
87
96
.
13.
Williams
,
K.
,
Gupta
,
K.
, and
Wasilik
,
M.
, 2003, “
Etch Rates for Micromachining Processing-Part II
,”
J. Microelectromech. Syst.
1057-7157,
12
(
6
), pp.
761
778
.
14.
Johnson
,
D. B.
,
Macvicar
,
J. H. M.
, and
Rolfe
,
S.
, 1987, “
A New Solid Medium for the Isolation and Enumeration of Thiobacillus Ferrooxidans and Acidophilic Heterotrophic Bacteria
,”
J. Microbiol. Methods
0167-7012,
7
(
1
), pp.
9
18
.
15.
Oblinger
,
J. L.
, and
Koburger
,
J. A.
, 1975, “
Understanding and Teaching the Most Probable Number Technique
,”
J. Milk Food Technol.
,
38
, pp.
540
545
.
16.
Southam
,
G.
, and
Beveridge
,
T. J.
, 1992, “
Enumeration of Thiobacilli Within pH-Neutral and Acidic Mine Tailings and Their Role in the Development of Secondary Mineral Soil
,”
Appl. Environ. Microbiol.
0099-2240,
58
, pp.
1904
1912
.
You do not currently have access to this content.