The continuing trend for producing novel micro- and nanostructured devices and components in a broad range of materials is a major motivating factor driving the research in the micro- and nanomanufacturing sector toward developing innovative process chains. Some of such chains enable the serial production of micro- and nanostructured parts in polymer material by combining innovatively and optimizing simultaneously master making and replication technologies. For producing features at the nanoscale, the master making processes that are currently commonly employed rely on complex lithography-based pattern transfers and/or on beam-based direct write processes. Unfortunately, the required equipment to perform these techniques are often capital intensive and necessitate particular operating temperatures or vacuum conditions. At the same time, during the development phase of new or improved nanotechnology-enabled products, it is beneficial to produce rapidly polymer prototypes to test the functionality of components with nanoscale features. Thus, the technologies currently available for nanostructuring replication masters do not comply with the low cost requirements typically associated with the production of small batches of components for prototyping purposes. As a result, this could restrict the successful development of products with functional features at the nanoscale. In this research, a new process chain is presented for the fabrication of nanostructured components in polymer that relies on a simple and cost-effective master making technology. In particular, atomic force microscopy scratching is employed as an alternative technique for nanostructuring replication masters for microinjection molding. The conducted experimental study demonstrated the potential of this approach for small and medium series production of nanostructured devices in thermoplastic materials. In addition, the effects of different scratching parameters on the achievable surface roughness and depth of the patterned structures were analyzed by employing the design of experiments approach.

1.
Royal Society and Royal Academy of Engineering, 2004, “
Nanoscience and Nanotechnologies: Opportunities and Uncertainties
,” Report accessed on 3rd July 2009 at http://www.nanotec.org.uk/finalReport.htmhttp://www.nanotec.org.uk/finalReport.htm.
2.
Brousseau
,
E. B.
,
Dimov
,
S. S.
, and
Pham
,
D. T.
, 2010, “
Some Recent Advances in Multi Material Micro and Nano Manufacturing
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
47
(
1–4
), pp.
161
180
.
3.
Guo
,
L. J.
, 2007, “
Nanoimprint Lithography: Methods and Material Requirements
,”
Adv. Mater.
0935-9648,
19
(
4
), pp.
495
513
.
4.
Kettle
,
J.
,
Hoyle
,
R. T.
, and
Dimov
,
S. S.
, 2009, “
Fabrication of Step-and-Flash Imprint Lithography (S-FIL) Templates Using XeF2 Enhanced Focused Ion-Beam Etching
,”
Appl. Phys. A
0721-7250,
96
(
4
), pp.
819
825
.
5.
Minev
,
R.
,
Ilieva
,
M.
,
Kettle
,
J.
,
Lalev
,
G.
,
Dimov
,
S.
,
Tzaneva
,
D.
,
Dermendjiev
,
I.
, and
Shishkov
,
R.
, 2010, “
Deposition and Focused Ion Beam Milling of Anticorrosive CrC Coatings on Tool Steel Substrates
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
47
(
1–4
), pp.
29
35
.
6.
Kettle
,
J.
,
Hoyle
,
R. T.
,
Dimov
,
S.
, and
Perks
,
R. M.
, 2008, “
Fabrication of Complex 3D Structures Using Step and Flash Imprint Lithography (S-FIL)
,”
Microelectron. Eng.
0167-9317,
85
(
5–6
), pp.
853
855
.
7.
Lalev
,
G.
,
Petkov
,
P.
,
Sykes
,
N.
,
Hirshy
,
H.
,
Velkova
,
V.
,
Dimov
,
S.
, and
Barrow
,
D.
, 2009, “
Fabrication and Validation of Fused Silica NIL Templates Incorporating Different Length Scale Features
,”
Microelectron. Eng.
0167-9317,
86
(
4–6
), pp.
705
708
.
8.
Scholz
,
S.
,
Griffiths
,
C. A.
,
Dimov
,
S. S.
,
Brousseau
,
E. B.
,
Lalev
,
G.
, and
Petkov
,
P.
, 2009, “
New Process Chains for Replicating Micro and Nano Structured Surfaces With Bio-Mimetic Applications
,”
Society of Plastics Engineers Annual Technical Conference, ANTEC2009
, Chicago, IL, Jun. 22–24, pp.
3021
3027
.
9.
Kettle
,
J.
,
Coppo
,
P.
,
Lalev
,
G. M.
,
Tattershall
,
C.
,
Dimov
,
S. S.
, and
Turner
,
M. L.
, 2008, “
Development and Validation of Functional Imprint Material for the Step and Flash Imprint Lithography Process
,”
Microelectron. Eng.
0167-9317,
85
(
5–6
), pp.
850
852
.
10.
Loesberg
,
W. A.
,
te Riet
,
J.
,
van Delft
,
F. C. M. J. M.
,
Schön
,
P.
,
Figdor
,
C. G.
,
Speller
,
S.
,
van Loon
,
J. J. W. A.
,
Walboomers
,
X. F.
, and
Jansen
,
J. A.
, 2007, “
The Threshold at which Substrate Nanogroove Dimensions May Influence Fibroblast Alignment and Adhesion
,”
Biomaterials
0142-9612,
28
(
27
), pp.
3944
3951
.
11.
Su
,
Y. C.
,
Shah
,
J.
, and
Lin
,
L.
, 2004, “
Implementation and Analysis of Polymeric Microstructure Replication by Micro Injection Molding
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
415
422
.
12.
Krohs
,
F.
,
Luttermann
,
T.
,
Stolle
,
C.
,
Fatikow
,
S.
,
Brousseau
,
E. B.
, and
Dimov
,
S.
, 2008, “
Towards Automation in AFM Based Nanomanipulation and Electron Beam Induced Deposition for Microstructuring
,”
Proceedings of the Fourth International Conference on Multi-Material Micro Manufacture
, Cardiff, UK, Sep. 09–11, Paper No. 4M2008, pp.
118
123
.
13.
Tseng
,
A. A.
,
Notargiacomo
,
A.
, and
Chen
,
T. P.
, 2005, “
Nanofabrication by Scanning Probe Microscope Lithography: A Review
,”
J. Vac. Sci. Technol. B
1071-1023,
23
(
3
), pp.
877
894
.
14.
Notargiacomo
,
A.
,
Foglietti
,
V.
,
Cianci
,
E.
,
Capellini
,
G.
,
Adami
,
M.
,
Faraci
,
P.
,
Evangelisti
,
F.
, and
Nicolini
,
C.
, 1999, “
Atomic Force Microscopy Lithography as a Nanodevice Development Technique
,”
Nanotechnology
0957-4484,
10
, pp.
458
463
.
15.
Fang
,
T. H.
,
Weng
,
C. I.
, and
Chang
,
J. G.
, 2000, “
Machining Characterization of the Nano-Lithography Process Using Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
11
, pp.
181
187
.
16.
Schumacher
,
H. W.
,
Keyser
,
U. F.
,
Zeitler
,
U.
,
Haug
,
R. J.
, and
Eberl
,
K.
, 2000, “
Controlled Mechanical AFM Machining of Two-Dimensional Electron Systems: Fabrication of a Single Electron Transistor
,”
Physica E (Amsterdam)
1386-9477,
6
(
1–4
), pp.
860
863
.
17.
Fang
,
T. H.
, and
Chang
,
J.
, 2003, “
Effects of AFM-Based Nanomachining Process on Aluminium Surface
,”
J. Phys. Chem. Solids
0022-3697,
64
(
6
), pp.
913
918
.
18.
Blach
,
J. A.
,
Watson
,
G. S.
,
Brown
,
C. L.
,
Pham
,
D. K.
,
Wright
,
J.
,
Nicolau
,
D. V.
, and
Myhra
,
S.
, 2004, “
A Mechanistic Approach to Tip-Induced Nano-Lithography of Polymer Surfaces
,”
Thin Solid Films
0040-6090,
459
, pp.
95
99
.
19.
Magno
,
R.
, and
Bennett
,
B. R.
, 1997, “
Nanostructure Patterns Written in III–V Semiconductors by an Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
70
(
14
), pp.
1855
1857
.
20.
Iwata
,
F.
,
Yamaguchi
,
M.
, and
Sasaki
,
A.
, 2003, “
Nanometer-Scale Layer Modification of Polycarbonate Surface by Scratching With Tip Oscillation Using an Atomic Force Microscope
,”
Wear
0043-1648,
254
, pp.
1050
1055
.
21.
Headrick
,
J. E.
,
Armstrong
,
M.
,
Cratty
,
J.
,
Hammond
,
S.
,
Sheriff
,
B.
, and
Berrie
,
C.
, 2005, “
Nanoscale Patterning of Alkyl Monolayers on Silicon Using the Atomic Force Microscope
,”
Langmuir
0743-7463,
21
, pp.
4117
4122
.
22.
Fonseca Filho
,
H. D.
,
Mauricio
,
M. H. P.
,
Ponciano
,
C. R.
, and
Prioli
,
R.
, 2004, “
Metal Layer Mask Patterning by Force Microscopy Lithography
,”
Mater. Sci. Eng., B
0921-5107,
112
, pp.
194
199
.
23.
Yan
,
Y.
,
Sun
,
T.
,
Liang
,
Y.
, and
Dong
,
S.
, 2007, “
Investigation on AFM-Based Micro/Nano-CNC Machining System
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
1651
1659
.
24.
Zilch
,
L. W.
,
Husseini
,
G. A.
,
Lua
,
Y. -Y.
,
Lee
,
M. V.
,
Gertsch
,
K. R.
,
Cannon
,
B. R.
,
Perry
,
R. M.
,
Sevy
,
E. T.
,
Asplund
,
M. C.
,
Woolley
,
A. T.
, and
Linford
,
M. R.
, 2004, “
Rapid and Convenient Method for Preparing Masters for Microcontact Printing With 1–12 μm Features
,”
Rev. Sci. Instrum.
0034-6748,
75
(
9
), pp.
3065
3067
.
25.
Hutter
,
J. L.
, and
Bechhoefer
,
J.
, 1993, “
Calibration of Atomic-Force Microscope Tips
,”
Rev. Sci. Instrum.
0034-6748,
64
, pp.
1868
1874
.
26.
Griffiths
,
C. A.
,
Dimov
,
S. S.
, and
Brousseau
,
E. B.
, 2008, “
Microinjection Moulding: The Influence of Runner Systems on Flow Behaviour and Melt Fill of Multiple Microcavities
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
222
(
9
), pp.
1119
1130
.
27.
Heckele
,
M.
, and
Schomburg
,
W. K.
, 2004, “
Review on Micro Molding of Thermoplastic Polymers
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
R1
R14
.
28.
Roy
,
R. K.
, 1990,
A Primer on the Taguchi Method
,
Van Nostrand Reinhold
,
New York
.
29.
Bhushan
,
B.
, 2005, “
Nanotribology and Nanomechanics
,”
Wear
0043-1648,
259
, pp.
1507
1531
.
You do not currently have access to this content.