Break junctions provide a direct way to interrogate electrical transport properties of molecules, in pursuit of molecular electronics devices. A number of approaches are used for the fabrication of break junctions, including optical/e-beam lithography, electromigration, mechanical control of suspended conductive electrodes/strips, and electrochemical deposition of conductive material and nanowires. All approaches either require serial and slow e-beam writing of nanoscale gaps or suffer from low-yield of nanogap electrode devices. Here, we report the use of focused ion beam (FIB) to “scratch” and remove a thin layer of gold from 3μm wide lines. The scratch results in thinning of the metal line and subsequent current-driven electromigration results into nanogaps at precise locations with high yield of devices. Combining FIB scratching with electromigration provides an elegant approach of creating nanoscale break junctions at an exact location and with a very narrow distribution of the nanogap sizes. Current-voltage measurements are done using a probe station before and after FIB scratch, and after the breaks were formed. Most of the gaps fall within 200–300 nm range and show negligible conductivity. The approach provides a novel, rapid, and high-throughput manufacturing approach of break junction fabrication that can be used for molecular sensing.

1.
Moreland
,
J.
, and
Ekin
,
J. W.
, 1985, “
Electron Tunneling Experiments Using Nb Sn “Break” Junctions
,”
J. Appl. Phys.
0021-8979,
58
, pp.
3888
3895
.
2.
Luber
,
S. M.
,
Strobel
,
S.
,
Tranitz
,
H. P.
,
Wegscheider
,
W.
,
Schuh
,
D.
, and
Tornow
,
M.
, 2005, “
Nanometre Spaced Electrodes on a Cleaved Algaas Surface
,”
Nanotechnology
0957-4484,
16
, pp.
1182
1185
.
3.
Liu
,
K.
,
Avouris
,
P.
,
Bucchignano
,
J.
,
Martel
,
R.
,
Sun
,
S.
, and
Michl
,
J.
, 2002, “
Simple Fabrication Scheme for Sub-10 nm Electrode Gaps Using Electron-Beam Lithography
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
865
867
.
4.
Carcenac
,
F.
,
Malaquin
,
L.
, and
Vieu
,
C.
, 2002, “
Fabrication of Multiple Nano-Electrodes for Molecular Addressing Using High-Resolution Electron Beam Lithography and Their Replication Using Soft Imprint Lithography
,”
Microelectron. Eng.
0167-9317,
61–62
, pp.
657
663
.
5.
Strachan
,
D. R.
,
Smith
,
D. E.
,
Johnston
,
D. E.
,
Park
,
T. H.
,
Therien
,
M. J.
,
Bonnell
,
D. A.
, and
Johnson
,
A. T.
, 2005, “
Controlled Fabrication of Nanogaps in Ambient Environment for Molecular Electronics
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
043109
.
6.
Park
,
H.
,
Lim
,
A. K. L.
,
Alivisatos
,
A. P.
,
Park
,
J.
, and
Mceuen
,
P. L.
, 1999, “
Fabrication of Metallic Electrodes With Nanometer Separation by Electromigration
,”
Appl. Phys. Lett.
0003-6951,
75
, pp.
301
303
.
7.
Reed
,
M. A.
,
Zhou
,
C.
,
Muller
,
C. J.
,
Burgin
,
T. P.
, and
Tour
,
J. M.
, 1997, “
Conductance of a Molecular Junction
,”
Science
0036-8075,
278
(
5336
), pp.
252
254
.
8.
Zhou
,
C.
,
Muller
,
C. J.
,
Deshpande
,
M. R.
,
Sleight
,
J. W.
, and
Reed
,
M. A.
, 1995, “
Microfabrication of a Mechanically Controllable Break Junction in Silicon
,”
Appl. Phys. Lett.
0003-6951,
67
, pp.
1160
1162
.
9.
Umeno
,
A.
, and
Hirakawa
,
K.
, 2005, “
Fabrication of Atomic-Scale Gold Junctions by Electrochemical Plating Using a Common Medical Liquid
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
143103
.
10.
Dong
,
X.
,
Xia
,
Y.
,
Zhu
,
G.
, and
Zhang
,
B.
, 2007, “
Molecular Sensing With the Tunnel Junction of an Au Nanogap in Solution
,”
Nanotechnology
0957-4484,
18
, p.
395502
.
11.
Cai
,
L. T.
,
Skulason
,
H.
,
Kushmerick
,
J. G.
,
Pollack
,
S. K.
,
Naciri
,
J.
,
Shashidhar
,
R.
,
Allara
,
D. L.
,
Mallouk
,
T. E.
, and
Mayer
,
T. S.
, 2004, “
Nanowire-Based Molecular Monolayer Junctions: Synthesis, Assembly, and Electrical Characterization
,”
J. Phys. Chem. B
1089-5647,
108
(
9
), pp.
2827
2832
.
12.
Widawsky
,
J. R.
,
Kamenetska
,
M.
,
Whalley
,
A. C.
,
Klare
,
J. E.
,
Nuckolls
,
C.
,
Hybertsen
,
M. S.
, and
Venkataraman
,
L.
, 2009,
Conductance of Molecular Wires Measured by STM-Break Junction
,
A. P.
Society
, ed.,
American Physical Society
,
Pittsburgh, PA
, p.
11008
.
13.
Brugger
,
J.
,
Beljakovic
,
G.
,
Despont
,
M.
,
De Rooij
,
N. F.
, and
Vettiger
,
P.
, 1997, “
Silicon Micro/Nanomechanical Device Fabrication Based on Focused Ion Beam Surface Modification and KOH Etching
,”
Microelectron. Eng.
0167-9317,
35
(
1–4
), pp.
401
404
.
14.
Nellen
,
P. M.
, and
Brönnimann
,
R.
, 2006, “
Milling Micro-Structures Using Focused Ion Beams
,”
Meas. Sci. Technol.
0957-0233,
17
, pp.
943
948
.
15.
Tseng
,
A. A.
, 2004, “
Recent Developments in Micromilling Using Focused Ion Beam Technology
,”
J. Micromech. Microeng.
0960-1317,
14
(
4
), pp.
R15
R34
.
16.
Schmuki
,
P.
, and
Erickson
,
L. E.
, 2000, “
Selective High-Resolution Electrodeposition on Semiconductor Defect Patterns
,”
Phys. Rev. Lett.
0031-9007,
85
(
14
), pp.
2985
2988
.
17.
Gadgil
,
V. J.
,
Tong
,
H. D.
,
Cesa
,
Y.
, and
Bennink
,
M. L.
, 2009, “
Fabrication of Nano Structures in Thin Membranes With Focused Ion Beam Technology
,”
Surf. Coat. Technol.
0257-8972,
203
(
17–18
), pp.
2436
2441
.
18.
Ramachandran
,
P. P.
,
Christensen
,
S. M.
, and
Iqbal
,
S. M.
, 2009, “
Electronic Detection of Selective Proteins Using Non Antibody-Based CMOS Chip
,”
Proceedings of the Life Science Systems and Applications Workshop, LiSSA 2009
, IEEE/NIH, Bethesda, MD.
19.
Noor
,
M. R.
,
Goyal
,
S.
,
Christensen
,
S. M.
, and
Iqbal
,
S. M.
, 2009, “
Electrical Detection of Single-Base DNA Mutation Using Functionalized Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
95
(
7
), p.
073901
.
20.
Demarchi
,
D.
,
Civera
,
P.
,
Piccinini
,
G.
,
Cocuzza
,
M.
, and
Perrone
,
D.
, 2009, “
Electrothermal Modelling for EIBJ Nanogap Fabrication
,”
Electrochim. Acta
0013-4686,
54
(
25
), pp.
6003
6009
.
21.
Liu
,
B.
,
Xiang
,
J.
,
Tian
,
J. H.
,
Zhong
,
C.
,
Mao
,
B. W.
,
Yang
,
F. Z.
,
Chen
,
Z. B.
,
Wu
,
S. T.
, and
Tian
,
Z. Q.
, 2005, “
Controllable Nanogap Fabrication on Microchip by Chronopotentiometry
,”
Electrochim. Acta
0013-4686,
50
(
15
), pp.
3041
3047
.
22.
Iqbal
,
S. M.
,
Balasundaram
,
G.
,
Ghosh
,
S.
,
Bergstrom
,
D. E.
, and
Bashir
,
R.
, 2005, “
Direct Current Electrical Characterization of ds-DNA in Nanogap Junctions
,”
Appl. Phys. Lett.
0003-6951,
86
(
15
), p.
153901
.
23.
Mahapatro
,
A. K.
,
Ghosh
,
S.
, and
Janes
,
D. B.
, 2006, “
Nanometer Scale Electrode Separation (Nanogap) Using Electromigration at Room Temperature
,”
IEEE Trans. Nanotechnol.
1536-125X,
5
(
3
), pp.
232
236
.
24.
Park
,
J.
,
Pasupathy
,
A. N.
,
Goldsmith
,
J. I.
,
Chang
,
C.
,
Yaish
,
Y.
,
Petta
,
J. R.
,
Rinkoski
,
M.
,
Sethna
,
J. P.
,
Abruña
,
H. D.
, and
Mceuen
,
P. L.
, 2002, “
Coulomb Blockade and the Kondo Effect in Single-Atom Transistors
,”
Nature (London)
0028-0836,
417
(
6890
), pp.
722
725
.
You do not currently have access to this content.