A quasi-static mechanics analysis of nanoscale surface polishing that provides insight into the surface topography evolution and the removal of material at the asperity level is presented. The analysis is based on a three-dimensional stochastic model that accounts for multiscale (fractal) surface roughness and elastic, elastic-plastic, and fully plastic asperity deformation by hard abrasive nanoparticles embedded in the soft surface layer of a rigid polishing plate. Numerical results of the steady-state roughness of the polished surface, material removal rate, and wear coefficient are presented in terms of the apparent contact pressure, polishing speed, original topography and mechanical properties of the polished surface, average size and density of nanoparticles, and surface roughness of the polishing plate. Simulation trends are associated with elastic-plastic and fully plastic asperity contacts, responsible for irreversible topography changes (roughening effect) and material removal (smoothening effect), respectively. Analytical trends and predictions of the steady-state roughness of the polished surface and material removal rate are shown to be in good agreement with experimental results of nanoscale surface polishing (lapping) of magnetic recording ceramic heads.

1.
Touge
,
M.
, and
Matsuo
,
T.
, 1996, “
Removal Rate and Surface Roughness in High-Precision Lapping of Mn-Zn Ferrite
,”
CIRP Ann.
,
45
, pp.
307
310
.
2.
Preston
,
F. W.
, 1927, “
The Theory and Design of Plate Glass Polishing Machines
,”
J. Soc. Glass Technol.
0368-4105,
11
, pp.
214
256
.
3.
Larsen-Basse
,
J.
, and
Liang
,
H.
, 1999, “
Probable Role of Abrasion in Chemo-Mechanical Polishing of Tungsten
,”
Wear
0043-1648,
233–235
, pp.
647
654
.
4.
Zhao
,
Y.
, and
Chang
,
L.
, 2002, “
A Micro-Contact and Wear Model for Chemical-Mechanical Polishing of Silicon Wafers
,”
Wear
0043-1648,
252
, pp.
220
226
.
5.
Tichy
,
J.
,
Levert
,
J. A.
,
Shan
,
L.
, and
Danyluk
,
S.
, 1999, “
Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
1523
1528
.
6.
Luo
,
J. F.
, and
Dornfeld
,
D. A.
, 2003, “
Material Removal Regions in Chemical Mechanical Planarization for Submicron Integrated Circuit Fabrication: Coupling Effects of Slurry Chemicals, Abrasive Size Distribution and Wafer-Pad Contact Area
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
16
, pp.
45
56
.
7.
Mandelbrot
,
B. B.
, 1967, “
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
0036-8075,
156
, pp.
636
638
.
8.
Berry
,
M. V.
, and
Lewis
,
Z. V.
, 1980, “
On the Weierstrass–Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
0950-1207,
370
, pp.
459
484
.
9.
Ausloos
,
M.
, and
Berman
,
D. H.
, 1985, “
A Multivariate Weierstrass–Mandelbrot Function
,”
Proc. R. Soc. London, Ser. A
0950-1207,
400
, pp.
331
350
.
10.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
0742-4787,
112
, pp.
205
216
.
11.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
, pp.
313
327
.
12.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
, pp.
3617
3624
.
13.
Komvopoulos
,
K.
, and
Yan
,
W.
, 1997, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
ASME J. Tribol.
0742-4787,
119
, pp.
391
400
.
14.
Yang
,
J.
, and
Komvopoulos
,
K.
, 2005, “
A Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces
,”
ASME J. Tribol.
0742-4787,
127
, pp.
315
324
.
15.
Komvopoulos
,
K.
, and
Ye
,
N.
, 2001, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
0742-4787,
123
, pp.
632
640
.
16.
Lu
,
W.
, and
Komvopoulos
,
K.
, 2001, “
Nanomechanical and Nanotribological Properties of Carbon, Chromium, and Titanium Carbide Ultrathin Films
,”
ASME J. Tribol.
0742-4787,
123
, pp.
717
724
.
17.
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2004, “
Analysis of the Spherical Indentation Cycle for Elastic-Perfectly Plastic Solids
,”
J. Mater. Res.
0884-2914,
19
, pp.
3641
3653
.
18.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
19.
Tjiptoharsono
,
F.
,
Gonzaga
,
L. V.
,
Zhang
,
M.
,
Hua
,
W.
, and
Liu
,
B.
, 2010, “
Slider Surface Control for Ultra-High Density Recording
,”
Microsyst. Technol.
0946-7076,
16
, pp.
301
307
.
20.
Shen
,
R.
, and
Zhong
,
J.
, 2006, “
Ultra Precision Polishing of GMR Hard-Disk Magnetic Head
,”
Proceedings of the Seventh International Conference on Electronics Packaging Technology
, Aug. 26–29.
21.
Rabinowicz
,
E.
, 1995,
Friction and Wear of Materials
, 2nd ed.,
Wiley
,
New York
.
You do not currently have access to this content.