The flow behavior of the fluid has a significant effect on the particle distribution in the solid-liquid mixing vessel. The stir casting process is generally conducted in a closed crucible, in which the flow pattern is invisible. Therefore, numerical simulation is a forceful tool to guide the experimental research. In the present study, the fluid flow in the stirred crucible during stir casting has been simulated using finite element method. The effects of some important stirring process parameters, such as the blade angle, rotating speed, the diameter of the impeller, and the stirrer geometry, on the flowing characteristics of the molten matrix have been investigated in order to achieve the effective flow pattern to uniformly disperse the ceramic particles in the molten matrix. The simulation results show that the process parameters have significant effects on the flow behavior of the fluid in the stirred crucible. The various combinations of these parameters are beneficial to generate a suitable condition for the composite casting. Further experimental investigation reveals that the present work can provide a guide for the industrial preparation of aluminum matrix composite with a uniform particle reinforcement distribution by stir casting process.

1.
Tzamtzis
,
S.
,
Barekar
,
N. S.
,
Hari Babu
,
N.
,
Patel
,
J.
,
Dhindaw
,
B. K.
, and
Fan
,
Z.
, 2009, “
Processing of Advanced Al/SiC Particulate Metal Matrix Composites Under Intensive Shearing—A Novel Rheo-Process
,”
Composites, Part A
1359-835X,
40
(
2
), pp.
144
151
.
2.
Kannan
,
S.
,
Kishawy
,
H. A.
, and
Balazinski
,
M.
, 2006, “
Flank Wear Progression During Machining Metal Matrix Composites
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
787
791
.
3.
Biswas
,
A.
, and
Sharma
,
K. K.
, 2007, “
An Experimental Investigation on the Fabrication and Testing of Mechanical Properties of Aluminum-Silicagel Metal Matrix Composite
,”
Mater. Manuf. Processes
1042-6914,
22
(
4
), pp.
489
491
.
4.
Mondal
,
D. P.
,
Ganesh
,
N. V.
,
Muneshwar
,
V. S.
,
Das
,
S.
, and
Ramakrishnan
,
N.
, 2006, “
Effect of SiC Concentration and Strain Rate on the Compressive Deformation Behaviour of 2014Al-SiCp Composite
,”
Mater. Sci. Eng., A
0921-5093,
433
(
1–2
), pp.
18
31
.
5.
Saravanan
,
R. A.
, and
Surappa
,
M. K.
, 2000, “
Fabrication and Characterisation of Pure Magnesium-30 vol % SiCp Particle Composite
,”
Mater. Sci. Eng., A
0921-5093,
276
(
1–2
), pp.
108
116
.
6.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
, 2002, “
Particle Distribution in Cast Metal Matrix Composites—Part I
,”
J. Mater. Process. Technol.
0924-0136,
123
(
2
), pp.
251
257
.
7.
Sukumaran
,
K.
,
Ravikumar
,
K. K.
,
Pillai
,
S. G. K.
,
Rajan
,
T. P. D.
,
Ravi
,
M.
,
Pillai
,
R. M.
, and
Pai
,
B. C.
, 2008, “
Studies on Squeeze Casting of Al 2124 Alloy and 2124-10% SiCp Metal Matrix Composite
,”
Mater. Sci. Eng., A
0921-5093,
490
(
1–2
), pp.
235
241
.
8.
Yang
,
Y.
,
Janaki Ram
,
G. D.
, and
Stucker
,
B. E.
, 2007, “
An Experimental Determination of Optimum Processing Parameters for Al/SiC Metal Matrix Composites Made Using Ultrasonic Consolidation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
4
), pp.
538
549
.
9.
Chaira
,
D.
,
Sangal
,
S.
, and
Mishra
,
B. K.
, 2007, “
Synthesis of Aluminium-Cementite Metal Matrix Composite by Mechanical Alloying
,”
Mater. Manuf. Processes
1042-6914,
22
(
4
), pp.
492
496
.
10.
Razavi Tousi
,
S. S.
,
Yazdani Rad
,
R.
,
Salahi
,
E.
,
Mobasherpour
,
I.
, and
Razavi
,
M.
, 2009, “
Production of Al–20 wt. % Al2O2 Composite Powder Using High Energy Milling
,”
Powder Technol.
0032-5910,
192
(
3
), pp.
346
351
.
11.
Rohatgi
,
P. K.
,
Sobczak
,
J.
,
Asthana
,
R.
, and
Kim
,
J. K.
, 2009, “
Inhomogeneities in Silicon Carbide Distribution in Stirred Liquids—A Water Model Study for Synthesis of Composites
,”
Mater. Sci. Eng., A
0921-5093,
252
(
1
), pp.
98
108
.
12.
Naher
,
S.
,
Brabazon
,
D.
, and
Looney
,
L.
, 2003, “
Simulation of the Stir Casting Process
,”
J. Mater. Process. Technol.
0924-0136,
143–144
, pp.
567
571
.
13.
Ravi
,
K. R.
,
Sreekumar
,
V. M.
,
Pillai
,
R. M.
,
Mahato
,
C.
,
Amaranathan
,
K. R.
,
Arul kumar
,
R.
, and
Pai
,
B. C.
, 2007, “
Optimization of Mixing Parameters Through a Water Model for Metal Matrix Composites Synthesis
,”
Mater. Des.
0264-1275,
28
(
3
), pp.
871
881
.
14.
Naher
,
S.
,
Brabazon
,
D.
, and
Looney
,
L.
, 2007, “
Computational and Experimental Analysis of Particulate Distribution During Al–SiC MMC Fabrication
,”
Composites, Part A
1359-835X,
38
(
3
), pp.
719
729
.
15.
Ahuja
,
G. N.
, and
Patwardhan
,
A. W.
, 2008, “
CFD and Experimental Studies of Solids Hold-Up Distribution and Circulation Patterns in Gas-Solid Fluidized Beds
,”
Chem. Eng. J.
0300-9467,
143
(
1–3
), pp.
147
160
.
16.
Panneerselvam
,
R.
,
Savithri
,
S.
, and
Surender
,
G. D.
, 2009, “
CFD Simulation of Hydrodynamics of Gas-Liquid-Solid Fluidised Bed Reactor
,”
Chem. Eng. Sci.
0009-2509,
64
(
6
), pp.
1119
1135
.
17.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
, 2002, “
Particle Distribution in Cast Metal Matrix Composites—Part II
,”
J. Mater. Process. Technol.
0924-0136,
123
(
2
), pp.
258
263
.
18.
Biswas
,
P. K.
,
Dev
,
S. C.
,
Godiwalla
,
K. M.
, and
Sivaramakrishnan
,
C. S.
, 1999, “
Effect of Some Design Parameters on the Suspension Characteristics of a Mechanically Agitated Sand-Water Slurry System
,”
Mater. Des.
0264-1275,
20
(
5
), pp.
253
265
.
19.
Gentric
,
C.
,
Mignon
,
D.
,
Bousquet
,
J.
, and
Tanguy
,
P. A.
, 2005, “
Comparison of Mixing in Two Industrial Gas-Liquid Reactors Using CFD Simulations
,”
Chem. Eng. Sci.
0009-2509,
60
(
8–9
), pp.
2253
2272
.
20.
Murthy
,
B. N.
,
Ghadge
,
R. S.
, and
Joshi
,
J. B.
, 2007, “
CFD Simulations of Gas-Liquid-Solid Stirred Reactor: Prediction of Critical Impeller Speed for Solid Suspension
,”
Chem. Eng. Sci.
0009-2509,
62
(
24
), pp.
7184
7195
.
21.
Kumaresan
,
T.
, and
Joshi
,
J. B.
, 2006, “
Effect of Impeller Design on the Flow Pattern and Mixing in Stirred Tanks
,”
Chem. Eng. J.
0300-9467,
115
(
3
), pp.
173
193
.
22.
Alliet-Gaubert
,
M.
,
Sardeing
,
R.
,
Xuereb
,
C.
,
Hobbes
,
P.
,
Letellier
,
B.
, and
Swaels
,
P.
, 2006, “
CFD Analysis of Industrial Multi-Staged Stirred Vessels
,”
Chem. Eng. Process.
0255-2701,
45
(
5
), pp.
415
427
.
23.
Jahoda
,
M.
,
Tomášková
,
L.
, and
Moštěk
,
M.
, 2009, “
CFD Prediction of Liquid Homogenisation in a Gas-Liquid Stirred Tank
,”
Chem. Eng. Res. Des.
0263-8762,
87
(
4
), pp.
460
467
.
24.
Deglon
,
D. A.
, and
Meyer
,
C. J.
, 2006, “
CFD Modelling of Stirred Tanks: Numerical Considerations
,”
Minerals Eng.
0892-6875,
19
(
10
), pp.
1059
1068
.
25.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
, 2001, “
The Enhancement of Wettability of SiC Particles in Cast Aluminium Matrix Composites
,”
J. Mater. Process. Technol.
0924-0136,
119
(
1–3
), pp.
329
335
.
You do not currently have access to this content.