Milling of thin-walled aerospace structures is a critical and challenging process. Available models for the prediction of the effect of the fixture on the dynamic response of flexible workpieces are computationally demanding and fail to represent practical cases for milling of thin-walled structures. Based on the analysis of typical structural components encountered in the aerospace industry, a generalized unit-element, with the shape of an asymmetric pocket, was identified to represent the dynamic response of these components. Accordingly, a computationally efficient dynamic model was developed to predict the dynamic response of typical thin-walled aerospace structures using the Rayleigh–Ritz method. In the formulation of this model, the dynamics of a 3D pocket is represented by an equivalent 2D multispan plate taking into account the effect of deformable fixture supports. The developed model was validated numerically and experimentally for different workpiece geometries and various types of loading. This model resulted in one to two orders of magnitude reduction in computation time when compared with the finite element models, with prediction errors less than 10%. The developed model meets the conflicting requirements of prediction accuracy and computational efficiency needed for interactive fixture design.

1.
Li
,
B.
, and
Melkote
,
S. N.
, 1999, “
Improved Workpiece Location Accuracy Through Fixture Layout Optimization
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
6
), pp.
871
883
.
2.
Michael Yu
,
W.
, and
Tong
,
L.
, 2002, “
A Full Contact Model for Fixture Kinematic Analysis
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
New York
, Vol.
2
, pp.
1602
1607
.
3.
Estrems
,
M.
,
Sanchez
,
H. T.
, and
Faura
,
F.
, 2003, “
Influence of Fixtures on Dimensional Accuracy in Machining Processes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
21
(
5
), pp.
384
390
.
4.
Marin
,
R. A.
, and
Ferreira
,
P. M.
, 2003, “
Analysis of the Influence of Fixture Locator Errors on the Compliance of Work Part Features to Geometric Tolerance Specifications
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
3
), pp.
609
616
.
5.
Qin
,
G. H.
,
Zhang
,
W. H.
, and
Wan
,
M.
, 2006, “
A Mathematical Approach to Analysis and Optimal Design of a Fixture Locating Scheme
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
29
(
3–4
), pp.
349
359
.
6.
Li
,
B.
,
Melkote
,
S. N.
, and
Liang
,
S. Y.
, 2000, “
Analysis of Reactions and Minimum Clamping Force for Machining Fixtures With Large Contact Areas
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
16
(
2
), pp.
79
84
.
7.
De Meter
,
E. C.
,
Xie
,
W.
,
Choudhuri
,
S.
,
Vallapuzha
,
S.
, and
Trethewey
,
M. W.
, 2001, “
A Model to Predict Minimum Required Clamp Pre-Loads in Light of Fixture-Workpiece Compliance
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
7
), pp.
1031
1054
.
8.
Sanchez
,
H. T.
,
Estrems
,
M.
, and
Faura
,
F.
, 2006, “
Fixturing Analysis Methods for Calculating the Contact Load Distribution and the Valid Clamping Regions in Machining Processes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
29
(
5–6
), pp.
426
435
.
9.
Siebenaler
,
S. P.
, and
Melkote
,
S. N.
, 2006, “
Prediction of Workpiece Deformation in a Fixture System Using the Finite Element Method
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
1
), pp.
51
58
.
10.
Raghu
,
A.
, and
Melkote
,
S. N.
, 2004, “
Analysis of the Effects of Fixture Clamping Sequence on Part Location Errors
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
4
), pp.
373
382
.
11.
Qin
,
G.
,
Zhang
,
W.
,
Wu
,
Z.
, and
Wan
,
M.
, 2007, “
Systematic Modeling of Workpiece-Fixture Geometric Default and Compliance for the Prediction of Workpiece Machining Error
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
789
801
.
12.
Shaogang
,
L.
,
Zheng
,
L.
,
Zhang
,
Z. H.
, and
Wen
,
D. H.
, 2006, “
Optimal Fixture Design in Peripheral Milling of Thin-Walled Workpiece
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
28
(
7–8
), pp.
653
658
.
13.
Liao
,
Y. J. G.
, and
Hu
,
S. J.
, 2000, “
Flexible Multibody Dynamics Based Fixture-Workpiece Analysis Model for Fixturing Stability
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
(
3
), pp.
343
362
.
14.
Liao
,
Y. G.
, and
Hu
,
S. J.
, 2001, “
An Integrated Model of a Fixture-Workpiece System for Surface Quality Prediction
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
17
(
11
), pp.
810
818
.
15.
Gu
,
F.
,
Melkote
,
S. N.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 1997, “
Model for the Prediction of Surface Flatness in Face Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
4
), pp.
476
484
.
16.
Sayeed
,
Q. A.
, and
de Meter
,
E. C.
, 1999, “
Mixed-Integer Programming Model for Fixture Layout Optimization
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
4
), pp.
701
708
.
17.
Sayeed
,
Q. A.
, and
De Meter
,
E. C.
, 1999, “
Compliance Based MIP Model and Heuristic for Support Layout Optimization
,”
Int. J. Prod. Res.
0020-7543,
37
(
6
), pp.
1283
1301
.
18.
Masset
,
L.
, and
Debongnie
,
J. F.
, 2004, “
Machining Processes Simulation: Specific Finite Element Aspects
,”
J. Comput. Appl. Math.
0377-0427,
168
(
1–2
), pp.
309
320
.
19.
De Meter
,
E. C.
, 1998, “
Fast Support Layout Optimization
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
(
10–11
), pp.
1221
1239
.
20.
Chu
,
C. -H.
,
Trethewey
,
M. W.
,
De Meter
,
E. C.
, and
Wu
,
C. -Y.
, 1997, “
Modeling and Analysis of Workpiece Static and Dynamic Structural Characteristics for Machining Operations
,”
Proceedings of the International Modal Analysis Conference-IMAC
,
SEM
,
Bethel, CT
, Vol.
1
, pp.
325
331
.
21.
Rai
,
J. K.
, and
Xirouchakis
,
P.
, 2008, “
Finite Element Method Based Machining Simulation Environment for Analyzing Part Errors Induced During Milling of Thin-Walled Components
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
6
), pp.
629
643
.
22.
Meshreki
,
M.
,
Kovecses
,
J.
,
Attia
,
H.
, and
Tounsi
,
N.
, 2008, “
Dynamics Modeling and Analysis of Thin-Walled Aerospace Structures for Fixture Design in Multiaxis Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
031011
.
23.
Satyanarayana
,
S.
, and
Melkote
,
S. N.
, 2004, “
Finite Element Modeling of Fixture-Workpiece Contacts: Single Contact Modeling and Experimental Verification
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
9
), pp.
903
913
.
24.
Meshreki
,
M.
, 2009, “
Dynamics of Thin-Walled Aerospace Structures for Fixture Design in Multi-axis Milling
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
25.
Ercoli
,
L.
, and
Laura
,
P. A. A.
, 1987, “
Analytical and Experimental Investigation on Vibrating, Continuous Rectangular Plates of Non-Uniform Thickness
,”
J. Sound Vib.
0022-460X,
112
(
3
), pp.
447
454
.
26.
Marchesiello
,
S.
,
Fasana
,
A.
,
Garibaldi
,
L.
, and
Piombo
,
B. A. D.
, 1999, “
Dynamics of Multi-Span Continuous Straight Bridges Subject to Multi-Degrees of Freedom Moving Vehicle Excitation
,”
J. Sound Vib.
0022-460X,
224
(
3
), pp.
541
561
.
27.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Lin
,
H. -P.
, and
Chang
,
S.
, 2005, “
Free Vibration Analysis of Multi-Span Beams With Intermediate Flexible Constraints
,”
J. Sound Vib.
0022-460X,
281
(
1–2
), pp.
155
169
.
29.
Wu
,
J. -S.
, and
Luo
,
S. -S.
, 1997, “
Use of the Analytical-and-Numerical Combined Method in the Free Vibration Analysis of a Rectangular Plate With Any Number of Point Masses and Translational Springs
,”
J. Sound Vib.
0022-460X,
200
(
2
), pp.
179
194
.
30.
Seguy
,
S.
,
Dessein
,
G.
, and
Arnaud
,
L.
, 2008, “
Surface Roughness Variation of Thin Wall Milling, Related to Modal Interactions
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
3–4
), pp.
261
74
.
You do not currently have access to this content.