This article presents a three-dimensional (3D) mathematical model for the plasma arc in gas tungsten arc welding (GTAW). The velocity, pressure, temperature, electric potential, current density, and magnetic field of the plasma arc are calculated by solving the mass, momentum, and energy conservation equations coupled with electromagnetic equations. The predicted results were compared with the published experimental data and good agreements were achieved. This 3D model can be used to study a nonaxisymmetric arc that may be caused by the presence of nonaxisymmetric weld pools, joint configurations, and perturbations such as an external magnetic field. This study also provides a method to calculate 3D arc pressure, heat flux, and current density on the surface of the weld pool which, if coupled with a weld pool model, will become a complete model of GTAW.

References

1.
Lancaster
,
J. F.
, 1986,
The Physics of Welding
, 2nd ed.,
Pergamon
,
Oxford
.
2.
Hsu
,
K. C.
,
Etemadi
,
K.
, and
Pfender
,
E.
, 1983, “
Study of the Free-Burning High-Intensity Argon Arc
,”
J. Appl. Phys.
,
54
, pp.
1293
1301
.
3.
McKelliget
,
J.
, and
Szekely
J.
, 1986, “
Heat Transfer and Fluid Flow in the Welding Arc
,”
Metall. Trans.
,
17A
, pp.
1139
1148
.
4.
Choo
,
R. T. C.
,
Szekely
,
J.
, and
Westhoff
,
R. C.
, 1990, “
Modeling of High-Current Arcs With Emphasis on Free Surface Phenomena in the Weld Pool
,”
Welding J.
,
69
, pp.
346s
361s
.
5.
Hsu
,
K. C.
, and
Pfender
,
E.
, 1983, “
Analysis of the Cathode Region of a Free-Burning High Intensity Argon Arc
,”
J. Appl. Phys.
,
54
, pp.
3818
3824
.
6.
Dinulescu
,
H. A.
, and
Pfender
,
E.
, 1980, “
Analysis of the Anode Boundary Layer of High Intensity Arcs
,”
J. Appl. Phys.
,
51
, pp.
3149
3157
.
7.
Jonsson
,
P. G.
,
Eagar
,
T. W.
, and
Szekely
,
J.
, 1995, “
Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium
,”
Metall. Trans.
,
26B
, pp.
383
395
.
8.
Fan
,
H. G.
,
Na
,
S.-J.
, and
Shi
,
Y. W.
, 1997, “
Mathematical Model of Arc in Pulsed Current Gas Tungsten Arc Welding
,”
J. Phys. D: Appl. Phys.
,
30
, pp.
94
102
.
9.
Haidar
,
J.
, 1998, “
A Theoretical Model for Gas Metal Arc Welding and Gas Tungsten Arc Welding I
,”
J. Appl. Phys.
,
84
, pp.
3518
3529
.
10.
Lowke
,
J. J.
,
Morrow
,
R.
, and
Haidar
,
J.
, 1997, “
A Simplified Unified Theory of Arcs and Their Electrodes
,”
J. Phys. D: Appl. Phys.
,
30
, pp.
2033
2042
.
11.
Fan
,
H. G.
, and
Kovacevic
,
R.
, 2004, “
A Unified Model of Transport Phenomena in Gas Metal Arc Welding Including Electrode, Arc Plasma and Molten Pool
,”
J. Phys. D: Appl. Phys.
,
37
, pp.
2531
2544
.
12.
Hu
,
J.
, and
Tsai
,
H. L.
, 2007, “
Heat and Mass Transfer in Gas Metal Arc Welding, Part I: The Arc
,”
Int. J. Heat Mass Transfer
,
50
, pp.
833
846
.
13.
Hu
,
J.
, and
Tsai
,
H. L.
, 2006, “
Effects of Current on Droplet Generation and Arc Plasma in Gas Metal Arc Welding
,”
J. Appl. Phys.
,
100
, pp.
053
304
.
14.
Hu
,
J.
, and
Tsai
,
H. L.
, 2007, “
Metal Transfer and Arc Plasma in Gas Metal Arc Welding
,”
ASME J. Heat Transfer
,
129
, pp.
1025
1035
.
15.
Zacharia
,
T.
,
Eraslan
,
A. H.
,
Aidun
,
D. K.
, and
David
,
S. A.
, 1989, “
Three-Dimensional Transient Model for Arc Welding Process
,”
Metall. Trans.
,
20B
, pp.
645
659
.
16.
Wang
,
Y.
, and
Tsai
,
H. L.
, 2001, “
Impingement of Filler Droplets and Weld Pool Dynamics During Gas Metal Arc Welding Process
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2067
2080
.
17.
Jonsson
,
P. G.
,
Szekely
,
J.
,
Choo
,
R. T. C.
, and
Quinn
,
T. P.
, 1994, “
Mathematical Models of Transport Phenomena Associated With Arc-Welding Processes: A Survey
,”
Model. Simul. Mater. Sci. Eng.
,
2
, pp.
995
1016
.
18.
Speckhofer
,
G.
, and
Schmidt
,
H. P.
, 1996, “
Experimental and Theoretical Investigation of High-Pressure Arcs – Part II: The Magnetically Deflected Arc (Three-Dimensional Modeling)
,”
IEEE Trans. Plasma Sci.
,
24
, pp.
1239
1248
.
19.
Kang
,
Y. H.
, and
Na
,
S. J.
, 2002, “
A Study on the Modeling of Magnetic Arc Deflection and Dynamic Analysis of Arc Sensor
,”
Welding J.
,
81
, pp.
8s
13s
20.
Hu
,
J.
,
Guo
,
H.
, and
Tsai
,
H. L.
, “
Weld Pool Dynamics and the Formation of Ripples in 3D Gas Metal Arc Welding
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2537
2552
.
21.
Hsu
,
K. C.
, and
Pfender
,
E.
, 1983, “
Two-Temperature Modeling of the Free-Burning, High-Intensity Arc
,”
J. Appl. Phys.
,
54
, pp.
4359
4366
.
22.
Evans
,
D. L.
, and
Tankin
,
R. S.
, 1967, “
Measurement of Emission and Absorption of Radiation by an Argon Plasma
,”
Phys. Fluids
,
10
, pp.
1137
1144
.
23.
Aithal
,
S. M.
,
Subranmaniam
,
V. V.
,
Pagan
,
J.
, and
Richardson
,
R. W.
, 1998, “
Numerical Model of a Transferred Plasma Arc
,”
J. Appl. Phys.
,
84
, pp.
3506
3517
.
24.
Patanka
,
S. V.
, and 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
25.
Tsai
,
N.
, 1983, “
Heat Distribution and Weld Bead Geometry in Arc Welding
,” Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.
26.
Nestor
,
O. H.
, 1962, “
Heat Intensity and Current Density Distributions at the Anode of High Current, Inert Gas Arcs
,”
J. Appl. Phys.
,
33
, pp.
1638
1648
.
27.
Maecker
,
H.
, 1955, “
Plasmaströmungen in Lichtbögen Infolge Eigenmagnetischer Kompression
,”
Z. Phys.
,
141
, pp.
198
216
(in German).
28.
Sanders
,
N. A.
, and
Pfender
,
E.
, 1984, “
Measurement of Anode Falls and Anode Heat Transfer in Atmospheric-Pressure High-Intensity Arcs
,”
J. Appl. Phys.
,
55
, pp.
714
722
.
You do not currently have access to this content.