The selective laser melting (SLM), due to its unique additive manufacturing (AM) processing manner and laser-induced nonequilibrium rapid melting/solidification mechanism, has a promising potential in developing new metallic materials with tailored performance. In this work, SLM of the SiC/AlSi10Mg composites was performed to prepare the Al-based composites with the multiple reinforcing phases. The influence of the SLM processing parameters on the constitutional phases, microstructural features, and mechanical performance (e.g., densification, microhardness, and wear property) of the SLM-processed Al-based composites was studied. The reinforcing phases in the SLM-processed Al-based composites included the unmelted micron-sized SiC particles, the in situ formed micron-sized Al4SiC4 strips, and the in situ produced submicron Al4SiC4 particles. As the input laser energy density increased, the extent of the in situ reaction between the SiC particles and the Al matrix increased, resulting in the larger degree of the formation of Al4SiC4 reinforcement. The densification rate of the SLM-processed Al-based composite parts increased as the applied laser energy density increased. The sufficiently high density (∼96% theoretical density (TD)) was achieved for the laser linear energy density larger than 1000 J/m. Due to the generation of the multiple reinforcing phases, the elevated mechanical properties were obtained for the SLM-processed Al-based composites, showing a high microhardness of 214 HV0.1, a considerably low coefficient of friction (COF) of 0.39, and a reduced wear rate of 1.56 × 10−5 mm3 N−1 m−1. At an excessive laser energy input, the grain size of the in situ formed Al4SiC4 reinforcing phase, both the strip- and particle-structured Al4SiC4, increased markedly. The significant grain coarsening and the formation of the interfacial microscopic shrinkage porosity lowered the mechanical properties of the SLM-processed Al-based composites. These findings in the present work are applicable and/or transferrable to other laser-based powder processing processes, e.g., laser cladding, laser metal deposition, or laser engineered net shaping.
Skip Nav Destination
Article navigation
April 2015
Research-Article
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
Dongdong Gu,
Dongdong Gu
1
College of Materials Science and Technology,
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Institute of Additive Manufacturing (3D Printing),
e-mail: dongdonggu@nuaa.edu.cn
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
e-mail: dongdonggu@nuaa.edu.cn
1Corresponding author.
Search for other works by this author on:
Fei Chang,
Fei Chang
College of Materials Science and Technology,
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Institute of Additive Manufacturing (3D Printing),
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Search for other works by this author on:
Donghua Dai
Donghua Dai
College of Materials Science and Technology,
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Institute of Additive Manufacturing (3D Printing),
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Search for other works by this author on:
Dongdong Gu
College of Materials Science and Technology,
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Institute of Additive Manufacturing (3D Printing),
e-mail: dongdonggu@nuaa.edu.cn
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
e-mail: dongdonggu@nuaa.edu.cn
Fei Chang
College of Materials Science and Technology,
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Institute of Additive Manufacturing (3D Printing),
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Donghua Dai
College of Materials Science and Technology,
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
Institute of Additive Manufacturing (3D Printing),
Nanjing University of Aeronautics and Astronautics (NUAA)
,Yudao Street 29
,Nanjing 210016
, China
1Corresponding author.
Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received July 4, 2014; final manuscript received October 20, 2014; published online December 12, 2014. Assoc. Editor: Z. J. Pei.
J. Manuf. Sci. Eng. Apr 2015, 137(2): 021010 (11 pages)
Published Online: April 1, 2015
Article history
Received:
July 4, 2014
Revision Received:
October 20, 2014
Online:
December 12, 2014
Citation
Gu, D., Chang, F., and Dai, D. (April 1, 2015). "Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases." ASME. J. Manuf. Sci. Eng. April 2015; 137(2): 021010. https://doi.org/10.1115/1.4028925
Download citation file:
Get Email Alerts
Pose Optimization in Robotic Milling Based on Surface Location Error
J. Manuf. Sci. Eng (July 2023)
Implementation of Inerter-Based Dynamic Vibration Absorber for Chatter Suppression
J. Manuf. Sci. Eng (July 2023)
Related Articles
Effect of Post Heat Treatment on the Microstructure and Tensile Properties of Nano TiC Particulate Reinforced Inconel 718 by Selective Laser Melting
J. Manuf. Sci. Eng (May,2020)
Laser Additive Manufacturing of Novel Aluminum Based Nanocomposite Parts: Tailored Forming of Multiple Materials
J. Manuf. Sci. Eng (February,2016)
The Role of Reinforcing Particle Size in Tailoring Interfacial Microstructure and Wear Performance of Selective Laser Melting WC/Inconel 718 Composites
J. Manuf. Sci. Eng (November,2018)
Property-Graded Stainless Steel 316L by Selective Laser Melting: Characterization & Design
J. Manuf. Sci. Eng (June,2023)
Related Proceedings Papers
Related Chapters
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies