This paper presents a semi-analytical numerical method for surface location error (SLE) prediction in milling processes, governed by a time-periodic delay-differential equation (DDE) in state-space form. The time period is discretized as a set of sampling grid points. By using the harmonic differential quadrature method (DQM), the first-order derivative in the DDE is approximated by the linear sums of the state values at all the sampling grid points. On this basis, the DDE is discretized as a set of algebraic equations. A dynamic map can then be constructed to simultaneously determine the stability and the steady-state SLE of the milling process. To obtain optimal machining parameters, an optimization model based on the milling dynamics is formulated and an interior point penalty function method is employed to solve the problem. Experimentally validated examples are utilized to verify the accuracy and efficiency of the proposed approach.

References

1.
Tlusty
,
J.
,
2000
,
Manufacturing Processes and Equipment
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Budak
,
E.
,
2006
, “
Analytical Models for High Performance Milling. Part II: Process Dynamics and Stability
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1489
1499
.10.1016/j.ijmachtools.2005.09.010
3.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
4.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University
,
Cambridge, UK
.
5.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
700
707
.10.1115/1.1392994
6.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
.10.1115/1.2039102
7.
Ghanati
,
M. F.
, and
Madoliat
,
R.
,
2012
, “
New Continuous Dynamic Coupling for Three Component Modeling of Tool-Holder-Spindle Structure of Machine Tools With Modified Effected Tool Damping
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021015
.10.1115/1.4006094
8.
Law
,
M.
,
Phani
,
A. S.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
.10.1115/1.4023453
9.
Karandikar
,
J. M.
,
Schmitz
,
T. L.
, and
Abbas
,
A. E.
,
2014
, “
Application of Bayesian Inference to Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021017
.10.1115/1.4026365
10.
Budak
,
E.
, and
Tekeli
,
A.
,
2005
, “
Maximizing Chatter Free Material Removal Rate in Milling Through Optimal Selection of Axial and Radial Depth of Cut Pairs
,”
CIRP Ann. Manuf. Technol.
,
54
(
1
), pp.
353
356
.10.1016/S0007-8506(07)60121-8
11.
Kurdi
,
M. H.
,
Schmitz
,
T. L.
,
Haftka
,
R. T.
, and
Mann
,
B. P.
,
2009
, “
Milling Optimisation of Removal Rate and Accuracy With Uncertainty: Part 1: Parameter Selection
,”
Int. J. Mater. Prod. Technol.
,
35
(
1–2
), pp.
3
25
.10.1504/IJMPT.2009.025209
12.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Applications—Part II: Optimization and Feedrate Scheduling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051005
.10.1115/1.2927435
13.
Altintas
,
Y.
,
Stépán
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
.10.1016/j.cirpj.2008.06.003
14.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.10.1016/j.ijmachtools.2011.01.001
15.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.10.1016/S0007-8506(07)62342-7
16.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst. Meas. Contr.
,
120
(
1
), pp.
22
30
.10.1115/1.2801317
17.
Tunc
,
L. T.
, and
Budak
,
E.
,
2013
, “
Identification and Modeling of Process Damping in Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021001
.10.1115/1.4023708
18.
Zheng
,
C. M.
,
Wang
,
J.-J. J.
, and
Sung
,
C. F.
,
2014
, “
Analytical Prediction of the Critical Depth of Cut and Worst Spindle Speeds for Chatter in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011003
.10.1115/1.4025452
19.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
20.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer-Verlag
,
New York
.
21.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.10.1115/1.1556860
22.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.10.1115/1.3124088
23.
Butcher
,
E. A.
, and
Bobrenkov
,
O. A.
,
2011
, “
On the Chebyshev Spectral Continuous Time Approximation for Constant and Periodic Delay Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1541
1554
.10.1016/j.cnsns.2010.05.037
24.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.10.1016/j.ijmachtools.2010.01.003
25.
Schmitz
,
T.
, and
Ziegert
,
J.
,
1999
, “
Examination of Surface Location Error Due to Phasing of Cutter Vibrations
,”
Precis. Eng.
,
23
(
1
), pp.
51
62
.10.1016/S0141-6359(98)00025-7
26.
Schmitz
,
T. L.
, and
Mann
,
B. P.
,
2006
, “
Closed-Form Solutions for Surface Location Error in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1369
1377
.10.1016/j.ijmachtools.2005.10.007
27.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
,
2005
, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
446
453
.10.1115/1.1948394
28.
Mann
,
B. P.
,
Edes
,
B. T.
,
Easley
,
S. J.
,
Young
,
K. A.
, and
Ma
,
K.
,
2008
, “
Chatter Vibration and Surface Location Error Prediction for Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
350
361
.10.1016/j.ijmachtools.2007.10.003
29.
Insperger
,
T.
,
Gradisek
,
J.
,
Kalveram
,
M.
,
Stépán
,
G.
,
Winert
,
K.
, and
Govekar
,
E.
,
2006
, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
913
920
.10.1115/1.2280634
30.
Bachrathy
,
D.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2009
, “
Surface Properties of the Machined Workpiece for Helical Mills
,”
Mach. Sci. Technol.
,
13
(
2
), pp.
227
245
.10.1080/10910340903012167
31.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling
,”
ASME J. Dyn. Syst. Meas. Contr.
,
133
(
2
), p.
024503
.10.1115/1.4003374
32.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.10.1115/1.4007622
33.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Stability Analysis of Milling Via the Differential Quadrature Method
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
044502
.10.1115/1.4024539
34.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1991
,
Topics in Matrix Analysis
,
Cambridge University
,
Cambridge, UK
.
35.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer-Verlag
,
New York
.
36.
Kurdi
,
M. H.
,
2005
, “
Robust Multicriteria Optimization of Surface Location Error and Material Removal Rate in High-Speed Milling Under Uncertainty
,” Ph.D. thesis, University of Florida, Gainesville, FL.
37.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
,
Wiley
,
Hoboken, NJ
.
38.
Yuan
,
Y.
, and
Sun
,
W.
,
1997
,
Optimization Theory and Methods
,
Science Press
,
Beijing, China
.
39.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
40.
Kolda
,
T. G.
,
Lewis
,
R. M.
, and
Torczon
,
V.
,
2003
, “
Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods
,”
SIAM Rev.
,
45
(
3
), pp.
385
482
.10.1137/S003614450242889
41.
Ma
,
L.
,
Melkote
,
S. N.
, and
Castle
,
J. B.
,
2013
, “
A Model-Based Computationally Efficient Method for On-Line Detection of Chatter in Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031007
.10.1115/1.4023716
42.
Hynynen
,
K. M.
,
Ratava
,
J.
,
Lindh
,
T.
,
Rikkonen
,
M.
,
Ryynänen
,
V.
,
Lohtander
,
M.
, and
Varis
,
J.
,
2014
, “
Chatter Detection in Turning Processes Using Coherence of Acceleration and Audio Signals
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044503
.10.1115/1.4026948
43.
Striz
,
A.
,
Wang
,
X.
, and
Bert
,
C.
,
1995
, “
Harmonic Differential Quadrature Method and Applications to Analysis of Structural Components
,”
Acta Mech.
,
111
(
1
), pp.
85
94
.10.1007/BF01187729
44.
Wang
,
Y.
,
2001
, “
Differential Quadrature Method and Differential Qudrature Element Method—Theory and Application
,” Ph.D. thesis, Nanjing University of Aeronautics & Astronautics, Nanjing, China.
You do not currently have access to this content.