The present study has proved the feasibility to produce the bulk-form TiC/AlSi10Mg nanocomposite parts with the novel reinforcing morphology and enhanced mechanical properties by selective laser melting (SLM) additive manufacturing (AM) process. The influence of linear laser energy density (η) on the microstructural evolution and mechanical performance (e.g., densification level, microhardness, wear and tribological properties) of the SLM-processed TiC/AlSi10Mg nanocomposite parts was comprehensively studied, in order to establish an in-depth relationship between SLM process, microstructures, and mechanical performance. It showed that the TiC reinforcement in the SLM-processed TiC/AlSi10Mg nanocomposites experienced an interesting microstructural evolution with the increase of the applied η. At an elevated η above 600 J/m, a novel regularly distributed ring structure of nanoscale TiC reinforcement was tailored in the matrix due to the unique metallurgical behavior of the molten pool induced by the operation of Marangoni flow. The near fully dense TiC/AlSi10Mg nanocomposite parts (>98.5% theoretical density (TD)) with the formation of ring-structured reinforcement demonstrated outstanding mechanical properties. The dimensional accuracy of SLM-processed parts well met the demand of industrial application with the shrinkage rates of 1.24%, 1.50%, and 1.72% in X, Y, and Z directions, respectively, with the increase of η to 800 J/m. A maximum microhardness of 184.7 HV0.1 was obtained for SLM-processed TiC/AlSi10Mg nanocomposites, showing more than 20% enhancement as compared with SLM-processed unreinforced AlSi10Mg part. The high densification response combined with novel reinforcement of SLM-processed TiC/AlSi10Mg nanocomposite parts also led to the considerably low coefficient of friction (COF) of 0.28 and wear rate of 2.73 × 10−5 mm3 · N−1 · m−1. The present work accordingly provides a fundamental understanding of the tailored forming of lightweight multiple nanocomposite materials system by laser AM.

References

1.
Wang
,
L. J.
,
Korkolis
,
Y.
, and
Kinsey
,
B. L.
,
2012
, “
Investigation of Strain Gradients and Magnitudes During Microbending
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041011
.
2.
Li
,
J. J.
,
Hu
,
S. J.
,
Carsley
,
J. E.
,
Lee
,
T. M.
,
Hector
,
L. G.
, and
Mishra
,
S.
,
2011
, “
Postanneal Mechanical Properties of Prestrained AA5182-O Sheets
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061007
.
3.
Li
,
M.
,
Brazill
,
R. L.
, and
Chu
,
E. W.
,
2000
, “
Initiation and Growth of Wrinkling due to Nonuniform Tension in Sheet Metal Forming
,”
Exp. Mech.
,
40
(
2
), pp.
180
189
.
4.
Harooni
,
M.
,
Kong
,
F. R.
,
Carlson
,
B.
, and
Kovacevic
,
R.
,
2012
, “
Mitigation of Pore Generation in Laser Welding of Magnesium Alloy AZ31B in Lap Joint Configuration
,”
ASME
Paper No. IMECE2012-89073, pp.
919
927
.
5.
Asgharifar
,
M.
,
Abramovitch
,
J.
,
Kong
,
F. R.
,
Carlson
,
B.
, and
Kovacevic
,
R.
,
2012
, “
Wettability Enhancement of Aluminum Alloys via Plasma Arc Discharge
,”
ASME
Paper No. MSEC2012-7331, pp.
449
455
.
6.
Yang
,
Y.
, and
Li
,
X. C.
,
2006
, “
Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
497
501
.
7.
Su
,
H.
,
Gao
,
W. L.
,
Zhang
,
H.
,
Liu
,
H. B.
,
Lu
,
J. A.
, and
Lu
,
Z.
,
2010
, “
Optimization of Stirring Parameters Through Numerical Simulation for the Preparation of Aluminum Matrix Composite by Stir Casting Process
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061007
.
8.
Gu
,
D. D.
,
Chang
,
F.
, and
Dai
,
D. H.
,
2015
, “
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021010
.
9.
Liu
,
H. P.
,
Zhou
,
S. Y.
, and
Li
,
X. C.
,
2013
, “
Inferring the Size Distribution of 3D Particle Clusters in Metal Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011013
.
10.
Cao
,
G. P.
,
Konishi
,
H.
, and
Li
,
X. C.
,
2008
, “
Mechanical Properties and Microstructure of Mg/SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031105
.
11.
Kennedy
,
A. R.
, and
Wyatt
,
S. M.
,
2001
, “
Characterising Particle–Matrix Interfacial Bonding in Particulate Al–TiC MMCs Produced by Different Methods
,”
Composites Part A
,
32
(
3–4
), pp.
555
559
.
12.
Tjong
,
S. C.
,
2007
, “
Novel Nanoparticle-Reinforced Metal Matrix Composites With Enhanced Mechanical Properties
,”
Adv. Eng. Mater.
,
9
(
8
), pp.
639
652
.
13.
Wu
,
J. Q.
,
Zhou
,
S. Y.
, and
Li
,
X. C.
,
2015
, “
Ultrasonic Attenuation Based Inspection Method for Scale-Up Production of A206-Al2O3 Metal Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011013
.
14.
Gu
,
D. D.
,
Wang
,
H. Q.
, and
Zhang
,
G. Q.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder
,”
Metall. Mater. Trans. A
,
45
(
1
), pp.
464
476
.
15.
Mortensen
,
A.
, and
Llorca
,
J.
,
2010
, “
Metal Matrix Composites
,”
Annu. Rev. Mater. Res.
,
40
, pp.
243
270
.
16.
Luo
,
S. D.
,
Li
,
Q.
,
Tian
,
J.
,
Wang
,
C.
,
Yan
,
M.
,
Schaffer
,
G. B.
, and
Qian
,
M.
,
2013
, “
Self-Assembled, Aligned TiC Nanoplatelet-Reinforced Titanium Composites With Outstanding Compressive Properties
,”
Scr. Mater.
,
69
(
1
), pp.
29
32
.
17.
Jiang
,
D. F.
,
Hong
,
C.
,
Zhong
,
M. L.
,
Alkhayat
,
M.
,
Weisheit
,
A.
,
Gasser
,
A.
,
Zhang
,
H. J.
,
Kelbassa
,
I.
, and
Poprawe
,
R.
,
2014
, “
Fabrication of Nano-TiCp Reinforced Inconel 625 Composite Coatings by Partial Dissolution of Micro-TiCp Through Laser Cladding Energy Input Control
,”
Surf. Coat. Technol.
,
249
, pp.
125
131
.
18.
Peng
,
H. X.
,
Fan
,
Z.
, and
Evans
,
J. R. G.
,
2001
, “
Bi-Continuous Metal Matrix Composites
,”
Mater. Sci. Eng. A
,
303
(
1–2
), pp.
37
45
.
19.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
20.
Ghariblu
,
H.
, and
Rahmati
,
S.
,
2014
, “
New Process and Machine for Layered Manufacturing of Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041004
.
21.
Pan
,
Y.
,
Zhou
,
C.
,
Chen
,
Y.
, and
Partanen
,
J.
,
2014
, “
Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031007
.
22.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
23.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.
24.
Nagel
,
J. K. S.
, and
Liou
,
F. W.
,
2010
, “
Designing a Modular Rapid Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061006
.
25.
Nair
,
R.
,
Jiang
,
W. P.
, and
Molian
,
P.
,
2004
, “
Nanoparticle Additive Manufacturing of Ni-H13 Steel Injection Molds
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
637
639
.
26.
Fu
,
C. H.
, and
Guo
,
Y. B.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
27.
Tayon
,
W. A.
,
Shenoy
,
R. N.
,
Redding
,
M. R.
,
Keith Bird
,
R.
, and
Hafley
,
R. A.
,
2014
, “
Correlation Between Microstructure and Mechanical Properties in an Inconel 718 Deposit Produced Via Electron Beam Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061005
.
28.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J. P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061012
.
29.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061018
.
30.
Price
,
S.
,
Cheng
,
B.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Process Parameter Effects
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061019
.
31.
Kempen
,
K.
,
Vrancken
,
B.
,
Buls
,
S.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2014
, “
Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061026
.
32.
Das
,
M.
,
Balla
,
V. K.
,
Basu
,
D.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2010
, “
Laser Processing of SiC-Particle-Reinforced Coating on Titanium
,”
Scr. Mater.
,
63
(
4
), pp.
438
441
.
33.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminium Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
.
34.
Thijs
,
L.
,
Kempen
,
K.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2013
, “
Fine-Structured Aluminium Products With Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder
,”
Acta Mater.
,
61
(
5
), pp.
1809
1819
.
35.
Li
,
Y. L.
, and
Gu
,
D. D.
,
2014
, “
Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder
,”
Mater. Des.
,
63
, pp.
856
867
.
36.
Buchbinder
,
D.
,
Meiners
,
W.
,
Pirch
,
N.
,
Wissenbach
,
K.
, and
Schrage
,
J.
,
2014
, “
Investigation on Reducing Distortion by Preheating During Manufacture of Aluminum Components Using Selective Laser Melting
,”
J. Laser Appl.
,
26
(
1
), p.
012004
.
37.
Brandl
,
E.
,
Heckenberger
,
U.
,
Holzinger
,
V.
, and
Buchbinder
,
D.
,
2012
, “
Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior
,”
Mater. Des.
,
34
, pp.
159
169
.
38.
Li
,
P. J.
,
Kandalova
,
E. G.
, and
Nikitin
,
V. I.
,
2005
, “
In Situ Synthesis of Al-TiC in Aluminum Melt
,”
Mater. Lett.
,
59
(
19–20
), pp.
2545
2548
.
39.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
40.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.
41.
Gu
,
D. D.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
,
Meng
,
G. B.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
.
42.
Simchi
,
A.
,
2006
, “
Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features
,”
Mater. Sci. Eng. A
,
428
(
1–2
), pp.
148
158
.
43.
Kruth
,
J. P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
730
759
.
44.
Yin
,
H. B.
, and
Emi
,
T.
,
2003
, “
Marangoni Flow at the Gas/Melt Interface of Steel
,”
Metall. Mater. Trans. B
,
34
(
5
), pp.
483
493
.
45.
Gu
,
D. D.
, and
Shen
,
Y. F.
,
2008
, “
Influence of Cu-Liquid Content on Densification and Microstructure of Direct Laser Sintered Submicron W-Cu/Micron Cu Powder Mixture
,”
Mater. Sci. Eng. A
,
489
(
1–2
), pp.
169
177
.
46.
Anestiev
,
L. A.
, and
Froyen
,
L.
,
1999
, “
Model of the Primary Rearrangement Processes at Liquid Phase Sintering and Selective Laser Sintering Due to Biparticle Interactions
,”
J. Appl. Phys.
,
86
(
7
), pp.
4008
4017
.
47.
Zhu
,
H. H.
,
Lu
,
L.
, and
Fuh
,
J. Y. H.
,
2006
, “
Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder
,”
Proc. Inst. Mech. Eng. B-J. Eng. Manuf.
,
220
(
2
), pp.
183
190
.
48.
Buchbinder
,
D.
,
Schleifenbaum
,
H.
, and
Heidrich
,
S.
,
2011
, “
High Power Selective Laser Melting (HP SLM) of Aluminum Parts
,”
Phys. Procedia
,
12
(
Part A
), pp.
271
278
.
You do not currently have access to this content.