Abstract

Interfacial layers greatly influence the performance of steel–aluminum friction stir welding (FSW) joints, and understanding the formation and evolution of intermetallic compounds (IMC) can help improve the mechanical properties of the welds. In this study, FSW was used to join DP 1180 high-strength steel to 7075 Al at different welding speeds. The effect of the galvanized layer on the IMC formation and evolution, and the mechanical performance of the steel–Al FSW joints were investigated. It was found that the galvanized steel–Al joints were formed only by metallurgical bonding, a continuous IMC layer composed of FeAl, Fe3Al, and Al–Zn eutectic developed at the joint interfaces. Joints were mechanically and metallurgically bonded in the non-galvanized steel, and a 3 µm thick IMC layer consisting of FeAl existed only in the stir zone (SZ). IMC layer formation was predicted according to thermodynamic principles, which is consistent with the interfacial microstructure evolution identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Shear tensile test results showed that the galvanized layer can effectively improve the metallurgical bonding strength of the steel–Al joints, and the optimum tensile properties were found in galvanized steel–Al joints.

References

1.
Kouadri David
,
A.
,
2014
, “
Study of Metallurgic and Mechanical Properties of Laser Welded Heterogeneous Joints Between DP600 Galvanised Steel and Aluminium 6082
,”
Mater. Des.
,
54
, pp.
184
195
. 10.1016/j.matdes.2013.07.093
2.
Lei
,
H. Y.
,
Li
,
Y. B.
,
Carlson
,
B. E.
, and
Lin
,
Z. Q.
,
2015
, “
Cold Metal Transfer Spot Joining of AA6061-T6 to Galvanized DP590 Under Different Modes
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051008
. 10.1115/1.4029093
3.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2014
, “
Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy to Advanced High Strength Steel
,”
Mater. Des.
,
59
, pp.
50
62
. 10.1016/j.matdes.2014.02.003
4.
Deng
,
L.
,
Lou
,
M.
,
Li
,
Y. B.
, and
Carlson
,
B. E.
,
2019
, “
Thermally Assisted Self-Piercing Riveting of AA6061-T6 to Ultrahigh Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101006
. 10.1115/1.4044255
5.
Pang
,
Q.
,
Zhang
,
J. H.
,
Mohammad Huq
,
J.
, and
Hu
,
Z. L.
,
2019
, “
Characterization of Microstructure Mechanical Properties and Formability for Thermomechanical Treatment of Friction Stir Welded 2024-O Alloys
,”
Mater. Sci. Eng. A
,
765
, p.
138303
. 10.1016/j.msea.2019.138303
6.
Cai
,
W.
,
Daehn
,
G.
,
Vivek
,
A.
,
Li
,
J.
,
Khan
,
H.
,
Mishra
,
R. S.
, and
Komarasamy
,
M.
,
2019
, “
A State-of-the-Art Review on Solid-State Metal Joining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031012
. 10.1115/1.4041182
7.
Hou
,
Z.
,
Sheikh-Ahmad
,
J.
,
Jarrar
,
F.
, and
Ozturk
,
F.
,
2018
, “
Residual Stresses in Dissimilar Friction Stir Welding of AA2024 and AZ31: Experimental and Numerical Study
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051015
. 10.1115/1.4039074
8.
Chen
,
Y. C.
,
Komazaki
,
T.
,
Kim
,
Y. G.
,
Tsumura
,
T.
, and
Nakata
,
K.
,
2008
, “
Interface Microstructure Study of Friction Stir Lap Joint of AC4C Cast Aluminum Alloy and Zinc-Coated Steel
,”
Mater. Chem. Phys.
,
111
(
2–3
), pp.
375
380
. 10.1016/j.matchemphys.2008.04.038
9.
Springer
,
H.
,
Szczepaniak
,
A.
, and
Raabe
,
D.
,
2015
, “
On the Role of Zinc on the Formation and Growth of Intermetallic Phases During Interdiffusion Between Steel and Aluminium Alloys
,”
Acta Mater.
,
96
, pp.
203
211
. 10.1016/j.actamat.2015.06.028
10.
Liu
,
X.
,
Zhao
,
S.
,
Chen
,
K.
, and
Ni
,
J.
,
2018
, “
Material Flow Visualization of Dissimilar Friction STIR Welding Process Using Nano-Computed Tomography
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111010
. 10.1115/1.4040915
11.
Chen
,
K.
,
Liu
,
X.
, and
Ni
,
J.
,
2018
, “
Friction Stir Resistance Spot Welding of Aluminum Alloy to Advanced High Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111007
. 10.1115/1.4038993
12.
Pourali
,
M.
,
Abdollah-zadeh
,
A.
,
Saeid
,
T.
, and
Kargar
,
F.
,
2017
, “
Influence of Welding Parameters on Intermetallic Compounds Formation in Dissimilar Steel/Aluminum Friction Stir Welds
,”
J. Alloys Compd.
,
715
, pp.
1
8
. 10.1016/j.jallcom.2017.04.272
13.
Chen
,
K.
,
Liu
,
X.
, and
Ni
,
J.
,
2017
, “
Effects of Process Parameters on Friction Stir Spot Welding of Aluminum Alloy to Advanced High-Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081016
. 10.1115/1.4036225
14.
Bang
,
H. S.
,
Bang
,
H. S.
,
Hong
,
J. H.
,
Jeon
,
G. H.
,
Kim
,
G. S.
, and
Kaplan
,
A. F. H.
,
2016
, “
Effect of Tungsten-Inert-Gas Preheating on Mechanical and Microstructural Properties of Friction Stir Welded Dissimilar Al Alloy and Mild Steel
,”
Strength Mater.
,
48
(
1
), pp.
152
159
. 10.1007/s11223-016-9750-7
15.
Swamy
,
M. M.
,
Muthukumaran
,
S.
, and
Kiran
,
K.
,
2017
, “
A Study on Friction Stir Multi Spot Welding Techniques to Join Commercial Pure Aluminum and Mild Steel Sheets
,”
Trans. Indian Inst. Met.
,
70
(
5
), pp.
1221
1232
. 10.1007/s12666-016-0916-6
16.
Ogura
,
T.
,
Nishida
,
T.
,
Tanaka
,
Y.
,
Nishida
,
H.
,
Yoshikawa
,
S.
,
Fujimoto
,
M.
, and
Hirose
,
A.
,
2013
, “
Microscale Evaluation of Mechanical Properties of Friction Stir Welded A6061 Aluminium Alloy/304 Stainless Steel Dissimilar lap Joint
,”
Sci. Technol. Weld. Joining
,
18
(
2
), pp.
108
113
. 10.1179/1362171812Y.0000000098
17.
Movahedi
,
M.
,
Kokabi
,
A. H.
,
Seyed Reihani
,
S. M.
,
Cheng
,
W. J.
, and
Wang
,
C. J.
,
2013
, “
Effect of Annealing Treatment on Joint Strength of Aluminum/Steel Friction Stir Lap Weld
,”
Mater. Des.
,
44
, pp.
487
492
. 10.1016/j.matdes.2012.08.028
18.
Nandan
,
R.
,
DebRoy
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2008
, “
Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties
,”
Prog. Mater Sci.
,
53
(
6
), pp.
980
1023
. 10.1016/j.pmatsci.2008.05.001
19.
Culcasi
,
J. D.
,
Seré
,
P. R.
,
Elsner
,
C. I.
, and
Di Sarli
,
A. R.
,
1999
, “
Control of the Growth of Zinc-Iron Phases in the Hot-Dip Galvanizing Process
,”
Surf. Coat. Technol.
,
122
(
1
), pp.
21
23
. 10.1016/S0257-8972(99)00404-1
20.
Sharghi
,
E.
, and
Farzadi
,
A.
,
2018
, “
Simulation of Strain Rate, Material Flow, and Nugget Shape During Dissimilar Friction Stir Welding of AA6061 Aluminum Alloy and Al-Mg2Si Composite
,”
J. Alloys Compd.
,
748
, pp.
953
960
. 10.1016/j.jallcom.2018.03.145
21.
Das
,
H.
,
Jana
,
S. S.
,
Pal
,
T. K.
, and
De
,
A.
,
2013
, “
Numerical and Experimental Investigation on Friction Stir Lap Welding of Aluminium to Steel
,”
Sci. Technol. Weld. Joining
,
19
(
1
), pp.
69
75
. 10.1179/1362171813Y.0000000166
22.
Atharifar
,
H.
,
Lin
,
D.
, and
Kovacevic
,
R.
,
2009
, “
Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding
,”
J. Mater. Eng. Perform.
,
18
(
4
), pp.
339
350
. 10.1007/s11665-008-9298-1
23.
Shi
,
L.
,
Wu
,
C. S.
,
Gao
,
S.
, and
Padhy
,
G. K.
,
2016
, “
Modified Constitutive Equation for Use in Modeling the Ultrasonic Vibration Enhanced Friction Stir Welding Process
,”
Scripta Mater.
,
119
, pp.
21
26
. 10.1016/j.scriptamat.2016.03.023
24.
Sheppard
,
T.
, and
Jackson
,
A.
,
1997
, “
Constitutive Equations for Use in Prediction of Flow Stress During Extrusion of Aluminium Alloys
,”
Mater. Sci. Technol.
,
13
(
3
), pp.
203
209
. 10.1179/mst.1997.13.3.203
25.
Mahmoudiniya
,
M.
,
Kokabi
,
A. H.
,
Kheirandish
,
S.
, and
Kestens
,
L. A. I.
,
2108
, “
Microstructure and Mechanical Properties of Friction Stir Welded Ferrite-Martensite DP700 Steel
,”
Mater. Sci. Eng. A
,
737
, pp.
213
222
. 10.1016/j.msea.2018.09.013
26.
Yang
,
Y.
,
Qian
,
H.
, and
Su
,
Y.
,
2018
, “
Effect of Mn Addition on Deformation Behaviour of 23% Cr Low Nickel Duplex Stainless Steel
,”
Mater. Charact.
,
145
, pp.
606
618
. 10.1016/j.matchar.2018.07.028
27.
Shi
,
L.
,
Wu
,
C. S.
,
Padhy
,
G. K.
, and
Gao
,
S.
,
2106
, “
Numerical Simulation of Ultrasonic Field and Its Acoustoplastic Influence on Friction Stir Welding
,”
Mater. Des.
,
104
, pp.
102
115
. 10.1016/j.matdes.2016.05.001
28.
Sun
,
Z.
, and
Wu
,
C. S.
,
2018
, “
A Numerical Model of Pin Thread Effect on Material Flow and Heat Generation in Shear Layer During Friction Stir Welding
,”
J. Manuf. Process.
,
36
, pp.
10
21
. 10.1016/j.jmapro.2018.09.021
29.
Yu
,
M.
,
Li
,
W. Y.
,
Li
,
J. L.
, and
Chao
,
Y. J.
,
2011
, “
Modelling of Entire Friction Stir Welding Process by Explicit Finite Element Method
,”
Mater. Sci. Technol.
,
28
(
7
), pp.
812
817
. 10.1179/1743284711Y.0000000087
30.
Zhou
,
L.
,
Li
,
G. H.
,
Zhang
,
R. X.
,
Zhou
,
W. L.
,
He
,
W. X.
,
Huang
,
Y. X.
, and
Song
,
X. G.
,
2019
, “
Microstructure Evolution and Mechanical Properties of Friction Stir Spot Welded Dissimilar Aluminum-Copper Joint
,”
J. Alloys Compd.
,
775
, pp.
372
382
. 10.1016/j.jallcom.2018.10.045
31.
Muhammad
,
N. A.
,
Wu
,
C. S.
, and
Tian
,
W.
,
2019
, “
Effect of Ultrasonic Vibration on the Intermetallic Compound Layer Formation in Al/Cu Friction Stir Weld Joints
,”
J. Alloys Compd.
,
785
, pp.
512
522
. 10.1016/j.jallcom.2019.01.170
32.
Tarasov
,
S. Y.
,
Rubtsov
,
V. E.
, and
Kolubaev
,
E. A.
,
2014
, “
A Proposed Diffusion-Controlled Wear Mechanism of Alloy Steel Friction Stir Welding (FSW) Tools Used on an Aluminum Alloy
,”
Wear
,
318
(
1–2
), pp.
130
134
. 10.1016/j.wear.2014.06.014
33.
Watanabe
,
M.
,
Feng
,
K.
,
Nakamura
,
Y.
, and
Kumai
,
S.
,
2011
, “
Growth Manner of Intermetallic Compound Layer Produced at Welding Interface of Friction Stir Spot Welded Aluminum/Steel Lap Joint
,”
Mater. Trans.
,
52
(
5
), pp.
953
959
. 10.2320/matertrans.L-MZ201120
34.
Wang
,
Y.
, and
Prangnell
,
P. B.
,
2018
, “
Evaluation of Zn-Rich Coatings for IMC Reaction Control in Aluminum-Magnesium Dissimilar Welds
,”
Mater. Charact.
,
139
, pp.
100
110
. 10.1016/j.matchar.2018.02.035
35.
Mahto
,
R. P.
,
Bhoje
,
R.
,
Pal
,
S. K.
,
Joshi
,
H. S.
, and
Das
,
S.
,
2016
, “
A Study on Mechanical Properties in Friction Stir Lap Welding of AA 6061-T6 and AISI 304
,”
Mater. Sci. Eng. A
,
652
, pp.
136
144
. 10.1016/j.msea.2015.11.064
36.
Ji
,
S.
,
Niu
,
S.
,
Liu
,
J.
, and
Meng
,
X.
,
2019
, “
Friction Stir Lap Welding of Al to Mg Assisted by Ultrasound and a Zn Interlayer
,”
J. Mater. Process. Tech.
,
267
, pp.
141
151
. 10.1016/j.jmatprotec.2018.12.010
37.
Chen
,
Y. C.
, and
Nakata
,
K.
,
2018
, “
Effect of the Surface State of Steel on the Microstructure and Mechanical Properties of Dissimilar Metal Lap Joints of Aluminum and Steel by Friction Stir Welding
,”
Mater. Trans. A.
,
39
(
8
), pp.
1985
1992
. 10.1007/s11661-008-9523-4
38.
Ogura
,
T.
,
Saito
,
Y.
,
Nishida
,
T.
,
Nishida
,
H.
,
Yoshida
,
T.
,
Omichi
,
N.
,
Fujimoto
,
M.
, and
Hirose
,
A.
,
2012
, “
Partitioning Evaluation of Mechanical Properties and the Interfacial Microstructure in a Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joint
,”
Scripta Mater.
,
66
(
8
), pp.
531
534
. 10.1016/j.scriptamat.2011.12.035
39.
Lee
,
I. S.
,
Kao
,
P. W.
, and
Ho
,
N. J.
,
2008
, “
Microstructure and Mechanical Properties of Al-Fe In Situ Nanocomposite Produced by Friction Stir Processing
,”
Intermetallics.
,
16
(
9
), pp.
1104
1108
. 10.1016/j.intermet.2008.06.017
40.
Aghajani Derazkola
,
H.
, and
Khodabakhshi
,
F.
,
2019
, “
Intermetallic Compounds (IMCs) Formation During Dissimilar Friction-Stir Welding of AA5005 Aluminum Alloy to St-52 Steel: Numerical Modeling and Experimental Study
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
2401
2422
. 10.1007/s00170-018-2879-8
41.
Movahedi
,
M.
,
Kokabi
,
A. H.
,
Reihani
,
S. M. S.
,
Najafi
,
H.
,
Farzadfar
,
S. A.
, and
Cheng
,
W. J.
,
2014
, “
Growth Kinetics of Al–Fe Intermetallic Compounds During Annealing Treatment of Friction Stir Lap Welds
,”
Mater. Charact.
,
90
, pp.
121
126
. 10.1016/j.matchar.2014.01.023
42.
Wang
,
K. F.
,
Upadhyay
,
P.
,
Wang
,
Y. X.
,
Li
,
J. J.
,
Sun
,
X.
, and
Roosendaal
,
T.
,
2019
, “
Investigation of Interfacial Layer for Friction Stir Scribe Welded Aluminum to Steel Joints
,”
ASME. J. Manuf. Sci. Eng.
,
140
(
11
), p.
111005
. 10.1115/1.4040873
43.
Kattner
,
U. R.
, and
Burton
,
B. P.
,
1993
,”
Phase Diagrams of Binary Iron Alloys
,
H.
Okamoto
, ed.,
ASM International
,
Materials Park, OH
, pp.
12
28
.
44.
Dehghani
,
M.
,
Amadeh
,
A.
, and
Akbari Mousavi
,
S. A. A.
,
2013
, “
Investigations on the Effects of Friction Stir Welding Parameters on Intermetallic and Defect Formation in Joining Aluminum Alloy to Mild Steel
,”
Mater. Des.
,
49
, pp.
433
441
. 10.1016/j.matdes.2013.01.013
45.
Tan
,
C.
,
Zang
,
C.
,
Xia
,
H.
,
Zhao
,
X.
,
Zhang
,
K.
,
Meng
,
S.
, and
Li
,
L.
,
2018
, “
Influence of Al Additions in Zn–Based Filler Metals on Laser Welding–Brazing of Al/Steel
,”
J. Manuf. Process.
,
34
, pp.
251
263
. 10.1016/j.jmapro.2018.06.008
46.
Sundman
,
B.
,
Ohnuma
,
I.
,
Dupin
,
N.
,
Kattner
,
U. R.
, and
Fries
,
S. G.
,
2009
, “
An Assessment of the Entire Al-Fe System Including D03 Ordering
,”
Acta. Mater.
,
57
(
10
), pp.
2896
2908
. 10.1016/j.actamat.2009.02.046
47.
Dinsdale
,
A. T.
,
1991
, “
SGTE Data for Pure Elements
,”
Calphad
,
15
(
4
), pp.
317
425
. 10.1016/0364-5916(91)90030-N
48.
Wan
,
L.
, and
Huang
,
Y. X.
,
2018
, “
Friction Stir Welding of Dissimilar Aluminum Alloys and Steels: A Review
,”
Int. J. Adv. Manuf. Technol.
,
99
(
5–8
), pp.
1781
1811
. 10.1007/s00170-018-2601-x
49.
Li
,
S.
,
Chen
,
Y.
,
Kang
,
J.
,
Amirkhiz
,
B. S.
, and
Nadeau
,
F.
,
2019
, “
Friction Stir Lap Welding of Aluminum Alloy to Advanced High Strength Steel Using a Cold-Spray Deposition as an Interlayer
,”
Mater. Lett.
,
239
, pp.
212
215
. 10.1016/j.matlet.2018.12.060
50.
Yang
,
Q.
,
Li
,
X.
,
Chen
,
K.
, and
Shi
,
Y. J.
,
2011
, “
Effect of Tool Geometry and Process Condition on Static Strength of a Magnesium Friction Stir Lap Linear Weld
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2463
2478
. 10.1016/j.msea.2010.12.030
51.
Badarinarayan
,
H.
,
Shi
,
Y.
,
Li
,
X.
, and
Okamoto
,
K.
,
2009
, “
Effect of Tool Geometry on Hook Formation and Static Strength of Friction Stir Spot Welded Aluminum 5754-O Sheets
,”
Int. J. Mach. Tools. Manuf.
,
49
(
11
), pp.
814
823
. 10.1016/j.ijmachtools.2009.06.001
52.
McKamey
,
C. G.
,
DeVan
,
J. H.
,
Tortorelli
,
P. E.
, and
Sikka
,
V. K.
,
1991
, “
A Review of Recent Developments in Fe3Al-Based Alloys
,”
Mater. Res.
,
6
(
8
), pp.
1779
1805
. 10.1557/JMR.1991.1779
You do not currently have access to this content.