Abstract

In the present work, the influence of stirrer blade design on the dispersion of reinforcement particles in the aluminum metal matrix was studied extensively through experiments and also simulated them using the computational fluid dynamics (CFD) method. The microstructure and mechanical properties of the produced metal matrix composites (MMCs) were studied. The analysis of the microstructure was performed using an optical microscope to visualize the reinforcement distribution and binding within the matrix. Further, field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) were used to characterize the MMCs. The experimental density was assessed using the Archimedes method, and the theoretical density was determined using the mixture law to determine the percentage of porosity in the MMCs. Hardness, compression, and tensile testing were performed on the produced samples. A three-dimensional computational method was used to predict the flow field of aluminum melt and study the influence of the blade design on the distribution of the reinforcement. Experimental results validated the CFD recommendation on the blade design. The CFD recommendation was based on the structure, power number, and the number of blades, and accordingly, the four-blade flat stirrer (B4) design was the best. The experimental results also corroborated the CFD recommendation with the four-blade flat stirrer design achieving the highest compressive strength (642 MPa), highest hardness (45 HRB), and highest tensile strength (206 MPa) among the five different blade designs investigated.

References

1.
Gu
,
D.
,
Wang
,
H.
, and
Dai
,
D.
,
2016
, “
Laser Additive Manufacturing of Novel Aluminum Based Nanocomposite Parts: Tailored Forming of Multiple Materials
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021004
. 10.1115/1.4030376
2.
Rohatgi
,
P. K.
,
Weiss
,
D.
, and
Gupta
,
N.
,
2006
, “
Applications of Fly Ash in Synthesizing Low-Cost MMCs for Automotive and Other Applications
,”
JOM
,
58
(
11
), pp.
71
76
. 10.1007/s11837-006-0232-4
3.
Shi
,
Q.
,
Gu
,
D.
,
Lin
,
K.
,
Chen
,
W.
,
Xia
,
M.
, and
Dai
,
D.
,
2018
, “
The Role of Reinforcing Particle Size in Tailoring Interfacial Microstructure and Wear Performance of Selective Laser Melting WC/Inconel 718 Composites
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111019
. 10.1115/1.4040544
4.
Gu
,
D.
,
Chang
,
F.
, and
Dai
,
D.
,
2015
, “
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), pp.
1
12
. 10.1115/1.4028925
5.
Bhushan
,
R. K.
,
Kumar
,
S.
, and
Das
,
S.
,
2013
, “
Fabrication and Characterization of 7075 Al Alloy Reinforced With SiC Particulates
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5–8
), pp.
611
624
. 10.1007/s00170-012-4200-6
6.
Ravi
,
K. R.
,
Sreekumar
,
V. M.
,
Pillai
,
R. M.
,
Mahato
,
C.
,
Amaranathan
,
K. R.
,
Arul kumar
,
R.
, and
Pai
,
B. C.
,
2007
, “
Optimization of Mixing Parameters Through a Water Model for Metal Matrix Composites Synthesis
,”
Mater. Des.
,
28
(
3
), pp.
871
881
. 10.1016/j.matdes.2005.10.007
7.
Rohatgi
,
P. K.
,
Sobczak
,
J.
,
Asthana
,
R.
, and
Kim
,
J. K.
,
1998
, “
Inhomogeneities in Silicon Carbide Distribution in Stirred Liquids—A Water Model Study for Synthesis of Composites
,”
Mater. Sci. Eng. A
,
252
(
1
), pp.
98
108
. 10.1016/S0921-5093(98)00651-0
8.
Bui
,
R. T.
,
Ouellet
,
R.
, and
Kocaefe
,
D.
,
1994
, “
A Two-Phase Flow Model of the Stirring of AI-SiC Composite Melt
,”
Metall. Mater. Trans. B
,
25
(
4
), pp.
607
618
. 10.1007/bf02650081
9.
Biswas
,
P. K.
,
Dev
,
S. C.
,
Godiwalla
,
K. M.
, and
Sivaramakrishnan
,
C. S.
,
1999
, “
Effect of Some Design Parameters on the Suspension Characteristics of a Mechanically Agitated Sand–Water Slurry System
,”
Mater. Des.
,
20
(
5
), pp.
253
265
. 10.1016/S0261-3069(98)00036-3
10.
Jebeen Moses
,
J.
, and
Joseph Sekhar
,
S.
,
2017
, “
Investigation on the Tensile Strength and Microhardness of AA6061/TiC Composites by Stir Casting
,”
Trans. Indian Inst. Met.
,
70
(
4
), pp.
1035
1046
. 10.1007/s12666-016-0891-y
11.
Mirbagheri
,
S. M. H.
,
Esmaeileian
,
H.
,
Serajzadeh
,
S.
,
Varahram
,
N.
, and
Davami
,
P.
,
2003
, “
Simulation of Melt Flow in Coated Mould Cavity in the Casting Process
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
493
507
. 10.1016/S0924-0136(03)00649-6
12.
Swaroopa
,
M.
,
Kumar
,
T. K.
,
Reddy
,
A. C.
, and
Majumdar
,
B.
,
2017
, “
Flow CFD Analysis of 2D Transient Melt Flow From Crucible on to the Rotatting Wheel in Planar Melt Spinning Process
,”
Mater. Today: Proc.
,
4
(
2
), pp.
2615
2623
. 10.1016/j.matpr.2017.02.135
13.
Wan
,
B.
,
Chen
,
W.
,
Mao
,
M.
,
Fu
,
Z.
, and
Zhu
,
D.
,
2018
, “
Numerical Simulation of a Stirring Purifying Technology for Aluminum Melt
,”
J. Mater. Process. Technol.
,
251
, pp.
330
342
. 10.1016/j.jmatprotec.2017.09.001
14.
Yamamoto
,
T.
,
Suzuki
,
A.
,
Komarov
,
S. V.
, and
Ishiwata
,
Y.
,
2018
, “
Investigation of Impeller Design and Flow Structures in Mechanical Stirring of Molten Aluminum
,”
J. Mater. Process. Technol.
,
261
, pp.
164
172
. 10.1016/j.jmatprotec.2018.06.012
15.
Dwivedi
,
S. P.
,
Sharma
,
S.
, and
Mishra
,
R. K.
,
2015
, “
Microstructure and Mechanical Behavior of A356/SiC/Fly-Ash Hybrid Composites Produced by Electromagnetic Stir Casting
,”
J. Braz. Soc. Mech. Sci. Eng.
,
37
(
1
), pp.
57
67
. 10.1007/s40430-014-0138-y
16.
Amirkhanlou
,
S.
,
Rezaei
,
M. R.
,
Niroumand
,
B.
, and
Toroghinejad
,
M. R.
,
2011
, “
Refinement of Microstructure and Improvement of Mechanical Properties of Al/Al2O3cast Composite by Accumulative Roll Bonding Process
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2548
2553
. 10.1016/j.msea.2010.12.049
17.
Torotwa
,
I.
, and
Ji
,
C.
,
2018
, “
A Study of the Mixing Performance of Different Impeller Designs in Stirred Vessels Using Computational Fluid Dynamics
,”
Designs
,
2
(
10
), pp.
1
16
. 10.3390/designs2010010
18.
Dinsdale
,
A. T.
, and
Quested
,
P. N.
,
2004
, “
The Viscosity of Aluminium and Its Alloys—A Review of Data and Models
,”
J. Mater. Sci.
,
9
(
24
), pp.
7221
7228
. 10.1023/B:JMSC.0000048735.50256.96
19.
Kumar
,
P.
,
Victor
,
J.
,
Arunachalam
,
R.
,
Mourad
,
A. I.
,
Muraliraja
,
R.
,
Al-Maharbi
,
M.
,
Murali
,
V.
, and
Manik
,
M.
,
2019
, “
Production of Aluminum Alloy-Based Metal Matrix Composites Using Scrap Aluminum Alloy and Waste Materials : Influence on Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
784
(
2019
), pp.
1047
1061
. 10.1016/j.jallcom.2019.01.115
20.
Wu
,
J.
,
Zhou
,
S.
, and
Li
,
X.
,
2015
, “
Ultrasonic Attenuation Based Inspection Method for Scale-up Production of A206-AI203 Metal Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), pp.
011013
10
. 10.1115/1.4028128
21.
Wu
,
J.
,
Yuan
,
Y.
, and
Li
,
X.
,
2017
, “
Size Distribution Estimation of Three-Dimensional Particle Clusters in Metal-Matrix Nanocomposites Considering Sampling Bias
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081017
. 10.1115/1.4036642
22.
Wu
,
J.
, and
Pullum
,
L.
,
2000
, “
Performance Analysis of Axial-Flow Mixing Impellers
,”
AIChE J.
,
46
(
3
), pp.
489
498
. 10.1002/aic.690460307
23.
Manikandan
,
R.
,
Arjunan
,
T. V.
, and
Akhil
,
A. R.
,
2020
, “
Studies on Micro Structural Characteristics, Mechanical and Tribological Behaviours of Boron Carbide and Cow Dung Ash Reinforced Aluminium (Al 7075) Hybrid Metal Matrix Composite
,”
Composites, Part B
,
183
, pp.
1
18
. 10.1016/j.compositesb.2019.107668
24.
Du
,
W. B.
,
Tatsuzawa
,
K.
,
Aizawa
,
T.
, and
Kihara
,
J.
,
2001
, “
Processing and Characterization of Alumina Wire by Controlled Fracture Forming Process: (I) Forming Behavior and Evolution of Green Microstructure
,”
Mater. Sci. Eng. A
,
316
(
1–2
), pp.
238
247
. 10.1016/S0921-5093(01)01241-2
25.
Zhao
,
B.
,
Yu
,
T.
,
Ding
,
W.
, and
Li
,
X.
,
2017
, “
Effects of Pore Structure and Distribution on Strength of Porous Cu-Sn-Ti Alumina Composites
,”
Chin. J. Aeronaut.
,
30
(
6
), pp.
2004
2015
. 10.1016/j.cja.2017.08.008
26.
Han
,
Q.
,
Setchi
,
R.
,
Lacan
,
F.
,
Gu
,
D.
, and
Evans
,
S. L.
,
2017
, “
Selective Laser Melting of Advanced Al-Al2O3 Nanocomposites : Simulation, Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
698
, pp.
162
173
. 10.1016/j.msea.2017.05.061
27.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1
, pp.
77
86
. 10.1016/j.addma.2014.08.001
28.
Razzaq
,
A. M.
,
Abdul Majid
,
D. L. A.
,
Ishak
,
M. R.
, and
Uday
,
M. B.
,
2017
, “
A Brief Research Review for Improvement Methods the Wettability Between Ceramic Reinforcement Particulate and Aluminium Matrix Composites
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
203
(
1
), pp.
1
6
. 10.1088/1757-899x/203/1/012002
29.
Hossein-Zadeh
,
M.
,
Mirzaee
,
O.
, and
Saidi
,
P.
,
2014
, “
Structural and Mechanical Characterization of Al-Based Composite Reinforced With Heat Treated Al2O3 Particles
,”
Mater. Des.
,
54
, pp.
245
250
. 10.1016/j.matdes.2013.08.036
30.
Hosseinzadeh
,
M.
,
Mirzaee
,
O.
, and
Mohammadian-Semnani
,
H.
,
2019
, “
Evaluation of Microstructural and Mechanical Properties of A356 Composite Strengthened by Nanocrystalline V8C7-Al2O3 Particles Synthesized Through Mechanically Activated Sintering
,”
J. Alloys Compd.
,
782
, pp.
995
1007
. 10.1016/j.jallcom.2018.12.150
31.
Mitra
,
R.
, and
Mahajan
,
Y. R.
,
1995
, “
Interfaces in Discontinuously Reinforced Metal Matrix Composites: An Overview
,”
Bull. Mater. Sci.
,
18
(
4
), pp.
405
434
. 10.1007/BF02749771
32.
Ammar
,
H. R.
,
Samuel
,
A. M.
, and
Samuel
,
F. H.
,
2008
, “
Effect of Casting Imperfections on the Fatigue Life of 319-F and A356-T6 Al-Si Casting Alloys
,”
Mater. Sci. Eng. A
,
473
(
1–2
), pp.
65
75
. 10.1016/j.msea.2007.03.112
33.
Kannan
,
C.
, and
Ramanujam
,
R.
,
2017
, “
Comparative Study on the Mechanical and Microstructural Characterisation of AA 7075 Nano and Hybrid Nanocomposites Produced by Stir and Squeeze Casting
,”
J. Adv. Res.
,
8
(
4
), pp.
309
319
. 10.1016/j.jare.2017.02.005
34.
Mehta
,
V. R.
, and
Sutaria
,
M. P.
,
2020
, “
Investigation on the Effect of Stirring Process Parameters on the Dispersion of SiC Particles Inside Melting Crucible
,”
Met. Mater. Int.
10.1007/s12540-020-00612-0
35.
Mazahery
,
A.
,
Abdizadeh
,
H.
, and
Baharvandi
,
H. R.
,
2009
, “
Development of High-Performance A356/Nano-Al2O3 Composites
,”
Mater. Sci. Eng. A
,
518
(
1–2
), pp.
61
64
. 10.1016/j.msea.2009.04.014
36.
Narayan
,
S.
, and
Rajeshkannan
,
A.
,
2017
, “
Hardness, Tensile and Impact Behaviour of Hot Forged Aluminium Metal Matrix Composites
,”
J. Mater. Res. Technol.
,
6
(
3
), pp.
213
219
. 10.1016/j.jmrt.2016.09.006
37.
Kim
,
H. H.
,
Babu
,
J. S. S.
, and
Kang
,
C. G.
,
2013
, “
Fabrication of A356 Aluminum Alloy Matrix Composite With CNTs / Al2O3 Hybrid Reinforcements
,”
Mater. Sci. Eng. A
,
573
, pp.
92
99
. 10.1016/j.msea.2013.02.041
38.
Roylance
,
D.
,
2001
, “
Stress-Strain Curves
,” http://web.mit.edu/course/3/3.11/www/modules/ss.pdf, Accessed 13 March 2020.
39.
Juang
,
S. H.
,
Fan
,
L. J.
, and
Yang
,
H. P. O.
,
2015
, “
Influence of Preheating Temperatures and Adding Rates on Distributions of Fly Ash in Aluminum Matrix Composites Prepared by Stir Casting
,”
Int. J. Precis. Eng. Manuf.
,
16
(
7
), pp.
1321
1327
. 10.1007/s12541-015-0173-3
40.
Prielipp
,
H.
,
Knechtel
,
M.
,
Claussen
,
N.
,
Streiffer
,
S. K.
,
Miillejans
,
H.
,
Rfihle
,
M.
, and
Rded
,
J.
,
1995
, “
Strength and Fracture Toughness of Aluminum/Alumina Composites With Interpenetrating Networks
,”
Mater. Sci. Eng. A
,
197
(
1
), pp.
19
30
. 10.1016/0921-5093(94)09771-2
41.
Guden
,
M.
,
Akil
,
O.
,
Tasdemirci
,
A.
, and
Hall
,
I. W.
,
2006
, “
Effect of Strain Rate on the Compressive Mechanical Behavior of a Continuous Alumina Fiber Reinforced ZE41A Magnesium Alloy Based Composite
,”
Mater. Sci. Eng. A
,
425
(
1–2
), pp.
145
155
. 10.1016/j.msea.2006.03.028
42.
Gu
,
D.
,
Liu
,
Z.
,
Xu
,
C.
,
Tao
,
C.
, and
Wang
,
Y.
,
2019
, “
PIV Measurement and CFD Simulation of Liquid-Liquid Mixing in Mixer Settler With Rigid-Flexible Impeller
,”
Int. J. Chem. React. Eng.
,
17
(
11
), pp.
1
15
. 10.1515/ijcre-2019-0065
43.
Edwards
,
M. F.
, and
Baker
,
M. R
,
1992
, “A Review of Liquid Mixing Equipment,”
Mixing in the Process Industries
, 2nd ed.,
N
Harnby
,
M. F.
Edwards
, and
A. W.
Nienow
, eds.,
Butterworth-Heinemann
,
UK
, pp.
118
136
.
44.
Su
,
H.
,
Gao
,
W.
,
Zhang
,
H.
,
Liu
,
H.
,
Lu
,
J.
, and
Lu
,
Z.
,
2010
, “
Optimization of Stirring Parameters Through Numerical Simulation for the Preparation of Aluminum Matrix Composite by Stir Casting Process
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061007
. 10.1115/1.4002851
45.
Kayode
,
I. A.
,
Ogedengbe
,
E. O. B.
, and
Rosen
,
M. A.
,
2016
, “
Design of Stirrer Impeller With Variable Operational Speed for a Food Waste Homogenizer
,”
Sustainability
,
8
(
5
), pp.
1
23
. 10.3390/su8050489
46.
Kumar
,
A.
,
Rana
,
R. S.
, and
Purohit
,
R.
,
2020
, “
Effect of Stirrer Design on Microstructure of MWCNT and Al Alloy by Stir Casting Process
,”
Adv. Mater. Process. Technol.
,
6
(
2
), pp.
372
379
.
47.
Hadjeb
,
A.
,
Bouzit
,
M.
,
Kamla
,
Y.
, and
Ameur
,
H.
,
2017
, “
A New Geometrical Model for Mixing of Highly Viscous Fluids by Combining Two-Blade and Helical Screw Agitators
,”
Pol. J. Chem. Technol.
,
19
(
3
), pp.
83
91
. 10.1515/pjct-2017-0053
48.
Ameur
,
H.
, and
Bouzit
,
M.
,
2012
, “
Mixing in Shear Thinning Fluids
,”
Braz. J. Chem. Eng.
,
29
(
2
), pp.
349
358
. 10.1590/S0104-66322012000200015
You do not currently have access to this content.