Abstract

Improving the post-processing of metallic porous tissue scaffolds is an essential step to create a new generation of superelastic implants for the replacement of damaged bone tissue. In this study, the dynamic chemical etching technique is applied to improve the permeability and to optimize the porous structure of Ti-Nb-Zr scaffolds fabricated by the powder metallurgy-based space holder technique. The etched scaffolds are characterized in terms of their porous structure geometry, permeability, and mechanical properties. It is shown that an increase in porosity from 49% to 54% during the etching is mainly due to an increase in the number of 100 to 800 μm-diameter pores, from 30% to 50% of them measuring from 100 to 300 μm in size. These changes in the porous structure lead to a significant increase of its permeability, i.e., from (0.1–15) × 10−11 m2 before etching to (44–91) × 10−11 m2, after etching; these permeability ranges corresponding to those of bone tissues. Furthermore, the etched scaffolds show systematically higher yield compressive stresses as compared to the as-sintered scaffolds of equivalent porosities. Finally, the highly permeable etched Ti-Nb-Zr scaffolds with a porosity varying from 40% to 60% exhibit an apparent Young’s modulus ranging from 8.6 to 1.9 GPa and an ultimate compressive strength from 650 to 190 MPa, which can be considered as a promising balance of properties for the potential use of these scaffolds as bone implants.

References

1.
Geetha
,
M.
,
Singh
,
A. K.
,
Asokamani
,
R.
, and
Gogia
,
A. K.
,
2009
, “
Ti-Based Biomaterials, the Ultimate Choice for Orthopedic Implants—A Review
,”
Progress Mater. Sci.
,
54
(
3
), pp.
397
425
. 10.1016/j.pmatsci.2008.06.004
2.
Miyazaki
,
S.
,
Kim
,
H. Y.
, and
Hosoda
,
H.
,
2006
, “
Development and Characterization of Ni-Free Ti-Base Shape Memory and Superelastic Alloys
,”
Mater. Sci. Eng. A
,
438–440
, pp.
18
24
. 10.1016/j.msea.2006.02.054
3.
Sheremetyev
,
V.
,
Petrzhik
,
M.
,
Zhukova
,
Y.
,
Kazakbiev
,
Y.
,
Arkhipova
,
A.
,
Moisenovich
,
M.
,
Prokoshkin
,
S.
, and
Brailovski
,
V.
,
2020
, “
Structural, Physical, Chemical, and Biological Surface Characterization of Thermomechanically Treated Ti-Nb-Based Alloys for Bone Implants
,”
J. Biomed. Mater. Res. B
,
108
(
3
), pp.
647
662
. 10.1002/jbm.b.34419
4.
Brailovski
,
V.
,
Prokoshkin
,
S.
,
Gauthier
,
M.
,
Inaekyan
,
K.
,
Dubinskiy
,
S.
,
Petrzhik
,
M.
, and
Filonov
,
M.
,
2011
, “
Bulk and Porous Metastable Beta Ti–Nb–Zr(Ta) Alloys for Biomedical Applications
,”
Mater. Sci. Eng. C
,
31
(
3
), pp.
643
657
. 10.1016/j.msec.2010.12.008
5.
Niinomi
,
M.
,
1999
, “
Recent Titanium R&D for Biomedical Applications in Japan
,”
JOM
,
51
(
6
), pp.
32
34
. 10.1007/s11837-999-0091-x
6.
Lewis
,
G.
,
2013
, “
Properties of Open-Cell Porous Metals and Alloys for Orthopedic Applications
,”
J. Mater. Sci.: Mater. Med.
,
24
(
10
), pp.
2293
2325
. 10.1007/s10856-013-4998-y
7.
Bose
,
S.
,
Roy
,
M.
, and
Bandyopadhyay
,
A.
,
2012
, “
Recent Advances in Bone Tissue Engineering Scaffolds
,”
Trends Biotechnol.
,
30
(
10
), pp.
546
554
. 10.1016/j.tibtech.2012.07.005
8.
Brailovski
,
V.
, and
Terriault
,
P.
,
2016
, “
Metallic Porous Materials for Orthopedic Implants: Functional Requirements, Manufacture, Characterization, and Modeling
,”
Ref. Module Mater. Sci. Mater. Eng.
10.1016/B978-0-12-803581-8.03892-3
9.
Rosa
,
A.
,
Crippa
,
G.
,
Oliveira
,
P.
,
Taba Jr
M.
,
Lefebvre
,
L.-P.
, and
Beloti
,
M. M.
,
2009
, “
Human Alveolar Bone Cell Proliferation, Expression of Osteoblastic Phenotype, and Matrix Mineralization on Porous Titanium Produced by Powder Metallurgy
,”
Clin. Oral Implants Res.
,
20
(
5
), pp.
472
481
. 10.1111/j.1600-0501.2008.01662.x
10.
Albrektsson
,
T.
,
Branemark
,
P.
,
Hansson
,
H.
, and
Lindström
,
J.
,
1981
, “
Osseointegrated Titanium Implants. Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in man
,”
Acta Orthop. Scand.
,
52
(
2
), pp.
155
170
. 10.3109/17453678108991776
11.
Li
,
J. P.
,
Habibovic
,
P.
,
Van den Doel
,
M.
,
Wilson
,
C. E.
,
De Wijn
,
J. R.
,
Van Blitterswijk
,
C. A.
, and
De Groot
,
K.
,
2007
, “
Bone Ingrowth in Porous Titanium Implants Produced by 3D Fiber Deposition
,”
Biomaterials
,
28
(
18
), pp.
2810
2820
. 10.1016/j.biomaterials.2007.02.020
12.
Hulbert
,
S.
,
Morrison
,
S. J.
, and
Klawitter
,
J. J.
,
1972
, “
Tissue Reaction to Three Ceramics of Porous and non-Porous Structures
,”
J. Biomed. Mater. Res.
,
6
(
5
), pp.
347
374
. 10.1002/jbm.820060505
13.
Singh
,
R.
,
Lee
,
P. D.
,
Lindley
,
T. C.
,
Dashwood
,
R. J.
,
Ferrie
,
E.
, and
Imwinkelried
,
T.
,
2009
, “
Characterization of the Structure and Permeability of Titanium Foams for Spinal Fusion Devices
,”
Acta Biomater.
,
5
(
1
), pp.
477
487
. 10.1016/j.actbio.2008.06.014
14.
Swider
,
P.
,
Conroy
,
M.
,
Pedrono
,
A.
,
Ambard
,
D.
,
Mantell
,
S.
,
Soballe
,
K.
, and
Bechtold
,
J. E.
,
2007
, “
Use of High-Resolution MRI for Investigation of Fluid Flow and Global Permeability in a Material With Interconnected Porosity
,”
J. Biomech.
,
40
(
9
), pp.
2112
2118
. 10.1016/j.jbiomech.2006.10.002
15.
Mitsak
,
A.
,
Kemppainen
,
J.
,
Harris
,
M.
, and
Hollister
,
S.
,
2011
, “
Effect of Polycaprolactone Scaffold Permeability on Bone Regeneration in Vivo
,”
Tissue Eng. A
,
17
(
13–14
), pp.
1831
1839
. 10.1089/ten.tea.2010.0560
16.
Maxwell
,
V.
, and
Wei
,
L.
,
2007
, “
A Permeability Measurement System for Tissue Engineering Scaffolds
,”
Meas. Sci. Technol.
,
18
(
1
), pp.
208
216
. 10.1088/0957-0233/18/1/026
17.
Gomes
,
M. E.
,
Sikavitsas
,
V. I.
,
Behravesh
,
E.
,
Reis
,
R. L.
, and
Mikos
,
A. G.
,
2003
, “
Effect of Flow Perfusion on the Osteogenic Differentiation of Bone Marrow Stromal Cells Cultured on Starch-Based Three-Dimensional Scaffolds
,”
J. Biomed. Mater. Res. A
,
67
(
1
), pp.
87
95
. 10.1002/jbm.a.10075
18.
Ochoa
,
I.
,
Sanz-Herrera
,
J. A.
,
García-Aznar
,
J. M.
,
Doblaré
,
M.
,
Yunos
,
D. M.
, and
Boccaccini
,
A. R.
,
2009
, “
Permeability Evaluation of 45S5 Bioglass Based Scaffolds for Bone Tissue Engineering
,”
J. Biomech.
,
42
(
3
), pp.
257
260
. 10.1016/j.jbiomech.2008.10.030
19.
Ardiyansyah
,
S.
,
Mohammed
,
R. A. K.
,
Muhamad
,
N. H.
, and
Öchsner
,
A.
,
2015
, “
Permeability Study of Cancellous Bone and its Idealised Structures
,”
Med. Eng. Phys.
,
37
(
1
), pp.
77
86
. 10.1016/j.medengphy.2014.11.001
20.
Nauman
,
E.
,
Fong
,
K.
, and
Keaveny
,
T.
,
1999
, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
517
524
. 10.1114/1.195
21.
Grimm
,
M.
, and
Williams
,
J.
,
1997
, “
Measurements of Permeability in Human Calcaneal Trabecular Bone
,”
J. Biomech.
,
30
(
7
), pp.
743
745
. 10.1016/S0021-9290(97)00016-X
22.
Takeuchi
,
M.
,
Abe
,
Y.
,
Yoshida
,
Y.
,
Nakayama
,
Y.
,
Okazaki
,
M.
, and
Akagawa
,
Y.
,
2003
, “
Acid Pretreatment of Titanium Implants
,”
Biomaterials
,
24
(
10
), pp.
1821
1827
. 10.1016/S0142-9612(02)00576-8
23.
Liu
,
X.
,
Chu
,
P. K.
, and
Ding
,
C.
,
2005
, “
Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications
,”
Mater. Sci. Eng. R
,
47
(
3
), pp.
49
121
. 10.1016/j.mser.2004.11.001
24.
Yao
,
Y.-t.
,
Liu
,
S.
,
Swain
,
M. V.
,
Zhang
,
X.-p.
,
Zhao
,
K.
, and
Jian
,
Y.-t.
,
2019
, “
Effects of Acid-Alkali Treatment on Bioactivity and Osteoinduction of Porous Titanium: An in Vitro Studyger
,”
Mater. Sci. Eng. C
,
94
, pp.
200
210
. 10.1016/j.msec.2018.08.056
25.
Shibli
,
S. M. A.
, and
Mathai
,
S.
,
2008
, “
Development and bio-Electrochemical Characterization of a Novel TiO2–SiO2 Mixed Oxide Coating for Titanium Implants
,”
J. Mater. Sci.: Mater. Med.
,
19
(
8
), pp.
2971
2981
. 10.1007/s10856-008-3409-2
26.
Todea
,
M.
,
Vulpoi
,
A.
, and
Popa
,
C.
,
2019
, “
Effect of Different Surface Treatments on Bioactivity of Porous Titanium Implants
,”
J. Mater. Sci. Technol.
,
35
(
3
), pp.
418
426
. 10.1016/j.jmst.2018.10.004
27.
Singh
,
R.
,
Lee
,
P.
,
Lindley
,
T.
,
Kohlhauser
,
C.
,
Hellmich
,
C.
,
Bram
,
M.
,
Imwinkelried
,
T.
, and
Dashwood
,
R.
,
2010
, “
Characterization of the Deformation Behavior of Intermediate Porosity Interconnected Ti Foams Using Micro-Computed Tomography and Direct Finite Element Modeling
,”
Acta Biomater.
,
6
(
6
), pp.
2342
2351
. 10.1016/j.actbio.2009.11.032
28.
Singh
,
R.
,
Lee
,
P. D.
,
Dashwood
,
R. J.
, and
Lindley
,
T. C.
,
2010
, “
Titanium Foams for Biomedical Applications: a Review
,”
Mater. Technol.
,
25
(
3–4
), pp.
127
136
. 10.1179/175355510X12744412709403
29.
Wen
,
C. E.
,
Yamada
,
Y.
,
Shimojima
,
K.
,
Chino
,
Y.
,
Hosokawa
,
H.
, and
Mabuchi
,
M.
,
2002
, “
Novel Titanium Foam for Bone Tissue Engineering
,”
J. Mater. Res.
,
17
(
10
), pp.
2633
2639
. 10.1557/JMR.2002.0382
30.
Wen
,
C.
,
Mabuchi
,
M.
,
Yamada
,
Y.
,
Shimojima
,
K.
,
Chino
,
Y.
, and
Asahina
,
T.
,
2001
, “
Processing of Biocompatible Porous Ti and Mg
,”
Scr. Mater.
,
45
(
10
), pp.
1147
1153
. 10.1016/S1359-6462(01)01132-0
31.
Wang
,
X.
,
Zhi
,
W.
,
Lu
,
X.
,
Li
,
X.
,
Duan
,
K.
,
Duan
,
R.
,
Mu
,
Y.
, and
Weng
,
J.
,
2009
, “
Porous TiNbZr Alloy Scaffolds for Biomedical Applications
,”
Acta Biomater.
,
5
(
9
), pp.
3616
3624
. 10.1016/j.actbio.2009.06.002
32.
Niu
,
W.
,
Bai
,
C.
,
Qiu
,
G. B.
, and
Wang
,
Q.
,
2009
, “
Processing and Properties of Porous Titanium Using Space Holder Technique
,”
Mater. Sci. Eng. A
,
506
(
1–2
), pp.
148
151
. 10.1016/j.msea.2008.11.022
33.
Rivard
,
J.
,
Brailovski
,
V.
,
Dubinskiy
,
S.
, and
Prokoshkin
,
S.
,
2014
, “
Fabrication, Morphology and Mechanical Properties of Ti and Ti-Based Alloy Foams for Biomedical Applications
,”
J. Mater. Sci. Eng. C
,
45
, pp.
421
433
. 10.1016/j.msec.2014.09.033
34.
Xu
,
W.
,
Lu
,
X.
,
Hayat
,
M. D.
,
Tian
,
J.
,
Huang
,
C.
,
Chen
,
M.
,
Qu
,
X.
, and
Wen
,
C.
,
2019
, “
Fabrication and Properties of Newly Developed Ti35Zr28Nb Scaffolds Fabricated by Powder Metallurgy for Bone-Tissue Engineering
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
3696
3704
. 10.1016/j.jmrt.2019.06.021
35.
Yuan
,
B.
,
Zhu
,
M.
, and
Chung
,
C. Y.
,
2018
, “
Biomedical Porous Shape Memory Alloys for Hard-Tissue Replacement Materials
,”
Materials
,
11
(
9
), pp.
1716
1769
. 10.3390/ma11091716
36.
Singh
,
S.
, and
Bhatnagar
,
N.
,
2018
, “
A Survey of Fabrication and Application of Metallic Foams (1925–2017)
,”
J. Porous Mater.
,
25
(
2
), pp.
537
554
. 10.1007/s10934-017-0467-1
37.
Dong
,
X.
,
Acuna
,
R.
,
Luo
,
Q.
, and
Wang
,
X.
,
2012
, “
Orientation Dependence of Progressive Post-Yield Behavior of Human Cortical Bone in Compression
,”
J. Biomech.
,
45
(
16
), pp.
2829
2834
. 10.1016/j.jbiomech.2012.08.034
38.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
. 10.1016/S0021-9290(03)00257-4
39.
Ding
,
M.
,
Dalstra
,
M.
,
Danielsen
,
C. C.
,
Kabel
,
J.
,
Hvid
,
I.
, and
Linde
,
F.
,
1997
, “
Age Variations in the Properties of Human Tibial Trabecular Bone
,”
Bone Jt. J.
,
79
(
6
), pp.
995
1002
. 10.1302/0301-620X.79B6.7538
40.
Imwinkelried
,
T.
,
2007
, “
Mechanical Properties of Open-Pore Titanium Foam
,”
J. Biomed. Mater. Res. A
,
81
(
4
), pp.
964
970
. 10.1002/jbm.a.31118
41.
Dabrowski
,
B.
,
Swieszkowski
,
W.
,
Godlinski
,
D.
, and
Kurzydlowski
,
K. J.
,
2010
, “
Highly Porous Titanium Scaffolds for Orthopaedic Applications
,”
J. Biomed. Mater. Res. B
,
95
(
1
), pp.
53
61
. 10.1002/jbm.b.31682
42.
Arifvianto
,
B.
,
Leeflang
,
M. A.
, and
Zhou
,
J.
,
2017
, “
Diametral Compression Behavior of Biomedical Titanium Scaffolds with Open, Interconnected Pores Prepared with the Space Holder Method
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
144
154
. 10.1016/j.jmbbm.2017.01.046
43.
Kim
,
S. W.
,
Jung
,
H.-D.
,
Kang
,
M.-H.
,
Kim
,
H.-E.
,
Koh
,
Y.-H.
, and
Estrin
,
Y.
,
2013
, “
Fabrication of Porous Titanium Scaffold with Controlled Porous Structure and Net-Shape Using Magnesium as Spacer
,”
Mater. Sci. Eng. C
,
33
(
5
), pp.
2808
2815
. 10.1016/j.msec.2013.03.011
44.
Gepreel
,
M. A. H.
, and
Niinomi
,
M.
,
2013
, “
Biocompatibility of Ti-Alloys for Long-Term Implantation
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
407
415
. 10.1016/j.jmbbm.2012.11.014
45.
Biesiekierski
,
A.
,
Lin
,
J.
,
Munir
,
K.
,
Ozan
,
S.
,
Li
,
Y.
, and
Wen
,
C.
,
2018
, “
An Investigation of the Mechanical and Microstructural Evolution of a TiNbZr Alloy With Varied Ageing Time
,”
Sci. Rep.
,
8
(
1
), p.
5737
. 10.1038/s41598-018-24155-y
46.
Wang
,
K.
,
1996
, “
The Use of Titanium for Medical Applications in the USA
,”
Mater. Sci. Eng. A
,
213
(
1–2
), pp.
134
137
. 10.1016/0921-5093(96)10243-4
You do not currently have access to this content.