Abstract

The fabrication of rubber products involves a complex chemical process, which is invariably assisted by temperature and pressure. Obviously, the curing process specifications have a strong impact on the quality and mechanical properties of the final product. Mechanistic kinetic models and phenomenological or empirical models have been used to describe the cure behavior of rubber. The empirical models ignore the chemical details and fit the data to a mathematic functional form where the constants of the model are determined based on experimental procedures such as rheometry. In this paper, we present the phenomenological characterization of the ethylene propylene diene monomer (EPDM) synthetic elastomer by mobile die rheometer (MDR). The kinetic parameters were calculated from Kamal-Ryan, Sestak-Berggren, and the Isayev-Deng methods at different temperatures. An Arrhenius-type function for the order of reaction n is introduced to improve the fit. Finally, Sesták–Berggren and Isayev-Denǵs empirical models were compared in order to determine which best describes the behavior including the proposed expression. The graphical and analytical description of the cure kinetics for the EPDM rubber was obtained consistently. The expression proposed to describe the order of the reaction is predicted to give a better establishment of processing time. It was noted that for EPDM at higher temperatures, the increase of the rate of reaction occurs in short period of time, which could cause premature curing if the supply system is inadequate.

References

1.
López-Manchado
,
M. A.
,
Arroyo
,
M.
,
Herrero
,
B.
, and
Biagiotti
,
J.
,
2003
, “
Vulcanization Kinetics of Natural Rubber–Organoclay Nanocomposites
,”
J. Appl. Polym. Sci.
,
89
(
1
), pp.
1
15
. 10.1002/app.12082
2.
Pantani
,
R.
,
2005
, “
Validation of a Model to Predict Birefringence in Injection Molding
,”
Eur. Polym. J.
,
41
(
7
), pp.
1484
1492
. 10.1016/j.eurpolymj.2005.02.006
3.
Restrepo-Zapata
,
N. C.
,
Eagleburger
,
B.
,
Saari
,
T.
,
Osswald
,
T. A.
, and
Hernández-Ortiz
,
J. P.
,
2016
, “
Chemorheological Time-Temperature-Transformation-Viscosity Diagram: Foamed EPDM Rubber Compound
,”
J. Appl. Polym. Sci.
,
133
, p.
38
. 10.1002/app.43966
4.
Arrillaga
,
A.
,
Zaldua
,
A. M.
,
Atxurra
,
R. M.
, and
Farid
,
A. S.
,
2007
, “
Techniques Used for Determining Cure Kinetics of Rubber Compounds
,”
Eur. Polym. J.
,
43
(
11
), pp.
4783
4799
. 10.1016/j.eurpolymj.2007.08.024
5.
Sun
,
X.
, and
Isayev
,
A. I.
,
2009
, “
Cure Kinetics Study of Unfilled and Carbon Black Filled Synthetic Isoprene Rubber
,”
Rubber Chem. Technol.
,
82
(
2
), pp.
149
169
. 10.5254/1.3548241
6.
Šesták
,
J.
, and
Kratochvíl
,
J.
,
1973
, “
Rational Approach to Thermodynamic Processes and Constitutive Equations in Isothermal and Non-isothermal Kinetics
,”
J. Therm. Anal. Calorim.
,
5
(
2-3
), pp.
193
201
. 10.1007/BF01950368
7.
Khang
,
T.
, and
Ariff
,
Z.
,
2012
, “
Vulcanization Kinetics Study of Natural Rubber Compounds Having Different Formulation Variables
,”
Journal of Thermal Analysis & Calorimetry
,
109
(
3
), pp.
1545
1553
. 10.1007/s10973-011-1937-3
8.
Keenan
,
M. R.
,
1987
, “
Autocatalytic Cure Kinetics From DSC Measurements: Zero Initial Cure Rate
,”
J. Appl. Polym. Sci.
,
33
(
5
), pp.
1725
1734
. 10.1002/app.1987.070330525
9.
Hong
,
I.-K.
, and
Lee
,
S.
,
2013
, “
Cure Kinetics and Modeling the Reaction of Silicone Rubber
,”
J. Ind. Eng. Chem.
,
19
(
1
), pp.
42
47
. 10.1016/j.jiec.2012.05.006
10.
Lopez
,
L. M.
,
Cosgrove
,
A. B.
,
Hernandez-Ortiz
,
J. P.
, and
Osswald
,
T. A.
,
2007
, “
Modeling the Vulcanization Reaction of Silicone Rubber
,”
Polymer Eng. Sci.
,
47
(
5
), pp.
675
683
. 10.1002/pen.20698
11.
Rafei
,
M.
,
Ghoreishy
,
M. H. R.
, and
Naderi
,
G.
,
2009
, “
Development of an Advanced Computer Simulation Technique for the Modeling of Rubber Curing Process
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
539
547
. 10.1016/j.commatsci.2009.09.022
12.
Yeoh
,
O. H.
,
2012
, “
Mathematical Modeling of Vulcanization Characteristics
,”
Rubber Chem. Technol.
,
85
(
3
), pp.
482
492
. 10.5254/rct.12.87982
13.
Kamal
,
M. R.
, and
Sourour
,
S.
,
1973
, “
Kinetics and Thermal Characterization of Thermoset Cure
,”
Polymer Eng. Sci.
,
13
(
1
), pp.
59
64
. 10.1002/pen.760130110
14.
Albano
,
C.
,
Hernández
,
M.
,
Ichazo
,
M. N.
,
González
,
J.
, and
DeSousa
,
W.
,
2011
, “
Characterization of NBR/Bentonite Composites: Vulcanization Kinetics and Rheometric and Mechanical Properties
,”
Polym. Bull.
,
67
(
4
), pp.
653
667
. 10.1007/s00289-010-0432-5
15.
Huang
,
X.
, and
Patham
,
B.
,
2013
, “
Experimental Characterization of a Curing Thermoset Epoxy-Anhydride System—Isothermal and Nonisothermal Cure Kinetics
,”
J. Appl. Polym. Sci.
,
127
(
3
), pp.
1959
1966
. 10.1002/app.37567
16.
Janković
,
B.
,
2010
, “
The Kinetic Analysis of Isothermal Curing Reaction of an Unsaturated Polyester Resin: Estimation of the Density Distribution Function of the Apparent Activation Energy
,”
Chem. Eng. J.
,
162
(
1
), pp.
331
340
. 10.1016/j.cej.2010.05.010
17.
Erfanian
,
M.-R.
,
Anbarsooz
,
M.
, and
Moghiman
,
M.
,
2016
, “
A Three Dimensional Simulation of a Rubber Curing Process Considering Variable Order of Reaction
,”
Appl. Math. Model.
,
40
(
19
), pp.
8592
8604
. 10.1016/j.apm.2016.05.024
18.
Ghoreishy
,
M. H. R.
,
Rafei
,
M.
, and
Naderi
,
G.
,
2012
, “
Optimization of the Vulcanization Process of a Thick Rubber Article Using an Advanced Computer Simulation Technique
,”
Rubber Chem. Technol.
,
85
(
4
), pp.
576
589
. 10.5254/rct.12.88917
19.
Lee
,
W. I.
,
Loos
,
A. C.
, and
Springer
,
G. S.
,
1982
, “
Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501-6 Resin
,”
J. Compos. Mater.
,
16
(
6
), pp.
510
520
. 10.1177/002199838201600605
You do not currently have access to this content.