Abstract

Providing advanced coating solutions for high-speed dry machining applications is gaining importance by the day especially with the increasing employment of difficult-to-machine materials in niche areas. Taking into account the recent demands in developing such coatings, in the present study, a novel low-friction coefficient nanocomposite coating: CrAlSiN/gradient (G)-CrAlSiCN was developed which can be used in high-speed or dry machining applications. Initially, CrAlSiN nanocomposite coating and carbon incorporated CrAlSiN coating were deposited separately using the cylindrical cathodic arc physical vapor deposition (PVD) technique. The as-deposited films were comprehensively analyzed to determine their adhesion strength, phase composition, sliding wear properties (friction coefficient), hardness, and tool life. Preliminary observations revealed that the films did not show evidence of diamond-like carbon (DLC) formation (from Raman analysis). Further, an increase in the carbon content led to a steep decrease in the adhesion strength. This result persuaded a study on developing a novel coating with gradient carbon architecture that would retain the properties of a nanocomposite whilst supporting the nanocomposite underlayer by reducing the coefficient of friction. In comparison with the CrAlSiN nanocomposite coating and a standard DLC coating, the novel gradient carbon coating showed superior tribological properties along with better tool life. This study marks the first such attempt at studying the influence of carbon incorporation to the CrAlSiN nanocomposite coating on improving the overall mechanical and tribological properties of the coating architecture (CrAlSiN/G-CrAlSiCN) for dry machining applications.

References

1.
Jawahir
,
I. S.
,
Schoop
,
J.
,
Kaynak
,
Y.
,
Balaji
,
A. K.
,
Ghosh
,
R.
, and
Lu
,
T.
,
2020
, “
Progress Toward Modeling and Optimization of Sustainable Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110811
. 10.1115/1.4047926
2.
Schmid
,
S. R.
,
Saha
,
P. K.
,
Wang
,
J.
, and
Schmitz
,
T.
,
2020
, “
Developments in Tribology of Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110803
. 10.1115/1.4047723
3.
Paiva
,
J. M. F.
,
Amorim
,
F. L.
,
Soares
,
P. C.
,
Veldhuis
,
S. C.
,
Mendes
,
L. A.
, and
Torres
,
R. D.
,
2017
, “
Tribological Behaviour of Superduplex Stainless Steel Against PVD Hard Coatings on Cemented Carbide
,”
Int. J. Adv. Manuf. Technol.
,
200
(
5–8
), pp.
1649
1658
. 10.1007/s00170-016-9514-3
4.
Bouzakis
,
K. D.
,
Michailidis
,
N.
,
Skordaris
,
G.
,
Bouzakis
,
E.
,
Biermann
,
D.
, and
M'Saoubi
,
R.
, “
Cutting With Coated Tools: Coating Technologies, Characterization Methods and Performance Optimization
,”
CIRP Ann.
,
61
(
2
), pp.
703
723
. 10.1016/j.cirp.2012.05.006
5.
Grigoriev
,
S. N.
,
Vereschaka
,
A. A.
,
Fyodorov
,
S. V.
,
Sitnikov
,
N. N.
, and
Batako
,
A. D.
,
2017
, “
Comparative Analysis of Cutting Properties and Nature of Wear of Carbide Cutting Tools With Multi-layered Nano-structured and Gradient Coatings Produced by Using of Various Deposition Methods
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
3421
3435
. 10.1007/s00170-016-9676-z
6.
Vetter
,
J.
,
1995
, “
Vacuum Arc Coatings for Tools: Potential and Application
,”
Surf. Coat. Technol
,
76–77
(
Part 2
), pp.
719
724
. 10.1016/0257-8972(95)02499-9
7.
Valleti
,
K.
,
Rejin
,
C.
, and
Joshi
,
S. V.
,
2012
, “
Factors Influencing Properties of CrN Thin Films Grown by Cylindrical Cathodic Arc Physical Vapor Deposition on HSS Substrates
,”
Mat. Sci. Eng. A
,
545
, pp.
155
161
. 10.1016/j.msea.2012.02.098
8.
Puneet
,
C.
,
Valleti
,
K.
, and
Venu Gopal
,
A.
,
2017
, “
Influence of Surface Preparation on the Tool Life of Cathodic Arc PVD Coated Twist Drills
,”
J. Manuf. Processes
,
27
, pp.
233
240
. 10.1016/j.jmapro.2017.05.011
9.
Bobzin
,
K.
,
2017
, “
High-Performance Coatings for Cutting Tools
,”
CIRP J. Manuf. Sci. Technol
,
18
, pp.
1
9
. 10.1016/j.cirpj.2016.11.004
10.
Inspektor
,
A.
, and
Salvador
,
P. A.
,
2014
, “
Architecture of PVD Coatings for Metalcutting Applications: A Review
,”
Surf. Coat. Technol.
,
257
, pp.
138
153
. 10.1016/j.surfcoat.2014.08.068
11.
Mayrhofer
,
P. H.
,
Mitterer
,
C.
,
Hultman
,
L.
, and
Clemens
,
H.
,
2006
, “
Microstructural Design of Hard Coatings
,”
Prog. Mater. Sci.
,
51
(
8
), pp.
1032
1114
. 10.1016/j.pmatsci.2006.02.002
12.
Hultman
,
L.
,
2000
, “
Thermal Stability of Nitride Thin Films
,”
Vacuum
,
57
(
1
), pp.
1
30
. 10.1016/S0042-207X(00)00143-3
13.
Sergevnin
,
V. S.
,
Blinkov
,
I. V.
,
Belov
,
D. S.
,
Smirnov
,
N. I.
,
Volkhonskii
,
A. O.
, and
Kuptsov
,
K. A.
,
2018
, “
Wear and Erosion of Arc-PVD Multilayer Ti-Al-Mo-N Coatings Under Various Conditions of Friction and Loading
,”
Int. J. Adv. Manuf. Technol.
,
98
(
1–4
), pp.
593
601
. 10.1007/s00170-018-2235-z
14.
Vereschaka
,
A. A.
,
Bublikov
,
J. I.
,
Sitnikov
,
N. N.
,
Oganyan
,
G. V.
, and
Sotova
,
C. S.
,
2018
, “
Influence of Nanolayer Thickness on the Performance Properties of Multilayer Composite Nano-structured Modified Coatings for Metal-Cutting Tools
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2625
2640
. 10.1007/s00170-017-1325-7
15.
Uslu
,
M. E.
,
Onel
,
A. C.
,
Ekinci
,
G.
,
Toydemir
,
B.
,
Durdu
,
S.
,
Usta
,
M.
, and
Arslan
,
L. C.
,
2015
, “
Investigation of (Ti, V) N and TiN/VN Coatings on AZ91D Mg Alloys
,”
Surf. Coat. Technol
,
284
, pp.
252
257
. 10.1016/j.surfcoat.2015.08.066
16.
Liu
,
Z. Q.
, and
Ai
,
X.
,
2005
, “
Cutting Tool Materials for High Speed Machining
,”
Prog. Nat. Sci.
,
15
(
9
), pp.
777
783
. 10.1080/10020070512331342910
17.
Veprek
,
S.
,
Nesladek
,
P.
,
Niederhofer
,
A.
, and
Glatz
,
F.
,
1998
, “
Search for Superhard Materials: Nanocrystalline Composites With Hardness Exceeding 50 GPa
,”
Nanostruct. Mater.
,
10
(
5
), pp.
679
689
. 10.1016/S0965-9773(98)00106-8
18.
Holubar
,
P.
,
Jilek
,
M.
, and
Sima
,
M.
,
2000
, “
Present and Possible Future Applications of Superhard Nanocomposite Coatings
,”
Surf. Coat. Technol
,
133–134
, pp.
145
151
. 10.1016/S0257-8972(00)00956-7
19.
Musil
,
J.
,
2000
, “
Hard and Superhard Nanocomposite Coatings
,”
Surf. Coat. Technol.
,
125
(
1–3
), pp.
322
330
. 10.1016/S0257-8972(99)00586-1
20.
Veprek
,
S.
, and
Argon
,
A. S.
,
2001
, “
Mechanical Properties of Superhard Nanocomposites
,”
Surf. Coat. Technol
,
146
, pp.
175
182
. 10.1016/S0257-8972(01)01467-0
21.
Vepřek
,
S.
, and
Reiprich
,
S.
,
1995
, “
A Concept for the Design of Novel Superhard Coatings
,”
Thin Solid Films
,
268
(
1–2
), pp.
64
71
. 10.1016/0040-6090(95)06695-0
22.
Vepřek
,
S.
,
Reiprich
,
S.
, and
Li
,
S.
,
1995
, “
Superhard Nanocrystalline Composite Materials: The TiN/Si3N4 System
,”
Appl. Phys. Lett.
,
66
(
20
), pp.
2640
2642
. 10.1063/1.113110
23.
Jilek
,
M.
,
Cselle
,
T.
,
Holubar
,
P.
,
Morstein
,
M.
,
Veprek-Heijman
,
M. G. J.
, and
Veprek
,
S.
,
2004
, “
Development of Novel Coating Technology by Vacuum Arc With Rotating Cathodes for Industrial Production of nc-(Al1−XTix)N/a-Si3N4 Superhard Nanocomposite Coatings for Dry, Hard Machining
,”
Plasma Chem. Plasma Process.
,
24
(
4
), pp.
493
510
. 10.1007/s11090-004-7929-3
24.
Kim
,
S. K.
,
Vinh
,
P. V.
,
Kim
,
J. H.
, and
Ngoc
,
T.
,
2005
, “
Deposition of Superhard TiAlSiN Thin Films by Cathodic Arc Plasma Deposition
,”
Surf. Coat. Technol.
,
200
(
5–6
), pp.
1391
1394
. 10.1016/j.surfcoat.2005.08.109
25.
Yamamoto
,
K.
,
Kujime
,
S.
, and
Takahara
,
K.
,
2005
, “
Structural and Mechanical Property of Si Incorporated (Ti,Cr,Al)N Coatings Deposited by Arc Ion Plating Process
,”
Surf. Coat. Technol
,
200
(
5–6
), pp.
1383
1390
. 10.1016/j.surfcoat.2005.08.025
26.
Tuchida
,
K.
,
Wathanyu
,
K.
, and
Surinphong
,
S.
,
2012
, “
Thermal Oxidation Behaviour of TiCrAlSiN and AlCrTiN Films on HastelloyX
,”
Adv. Mater. Res.
,
486
, pp.
400
405
. www.scientific.net/AMR.486.400
27.
Chang
,
C. C.
,
Chen
,
H. W.
,
Lee
,
J. W.
, and
Duh
,
J. G.
,
2015
, “
Influence of Si Contents on Tribological Characteristics of CrAlSiN Nanocomposite Coatings
,”
Thin Solid Films
,
584
, pp.
46
51
. 10.1016/j.tsf.2015.02.022
28.
Zhang
,
S.
,
Wang
,
L.
,
Wang
,
Q.
, and
Li
,
M.
,
2013
, “
A Superhard CrAlSiN Superlattice Coating Deposited by Multi-arc Ion Plating: II. Thermal Stability and Oxidation Resistance
,”
Surf. Coat. Technol.
,
214
, pp.
153
159
. 10.1016/j.surfcoat.2012.05.143
29.
Chen
,
Y.
,
Du
,
H.
,
Chen
,
M.
,
Yang
,
J.
,
Xiong
,
J.
, and
Zhao
,
H.
,
2016
, “
Structure and Wear Behavior of AlCrSiN-Based Coatings
,”
Appl. Surf. Sci.
,
370
, pp.
176
183
. 10.1016/j.apsusc.2015.12.027
30.
Chang
,
C. C.
,
Chen
,
H. W.
,
Lee
,
J. W.
, and
Duh
,
J. G.
,
2015
, “
Development of Si-Modified CrAlSiN Nanocomposite Coating for Anti-wear Application in Extreme Environment
,”
Surf. Coat. Technol.
,
284
, pp.
273
280
. 10.1016/j.surfcoat.2015.06.090
31.
Wu
,
W.
,
Chen
,
W.
,
Yang
,
S.
,
Lin
,
Y.
,
Zhang
,
S.
,
Cho
,
T.-Y.
,
Lee
,
G. H.
, and
Kwon
,
S.-C.
,
2015
, “
Design of AlCrSiN Multilayers and Nanocomposite Coating for HSS Cutting Tools
,”
Appl. Surf. Sci.
,
351
, pp.
803
810
. 10.1016/j.apsusc.2015.05.191
32.
Chang
,
Y. Y.
, and
Lai
,
H. M.
,
2014
, “
Wear Behavior and Cutting Performance of CrAlSiN and TiAlSiN Hard Coatings on Cemented Carbide Cutting Tools for Ti Alloys
,”
Surf. Coat. Technol.
,
259
(
Part B
), pp.
152
158
. 10.1016/j.surfcoat.2014.02.015
33.
Puneet
,
C.
,
Valleti
,
K.
,
Venu Gopal
,
A.
, and
Joshi
,
S. V.
,
2018
, “
CrAlSiN Nanocomposite Thin Films for High Speed Machining Applications
,”
Mater. Manuf. Processes.
,
33
(
4
), pp.
371
377
. 10.1080/10426914.2017.1303157
34.
Veprek
,
S.
, and
Veprek-Heijman
,
M. J. G.
,
2008
, “
Industrial Applications of Superhard Nanocomposite Coatings
,”
Surf. Coat. Technol.
,
202
(
21
), pp.
5063
5073
. 10.1016/j.surfcoat.2008.05.038
35.
Le
,
B.
,
Khaliq
,
J.
,
Huo
,
D.
,
Teng
,
X.
, and
Shyha
,
I.
,
2020
, “
A Review on Nanocomposites. Part 1: Mechanical Properties
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
10
), p.
100801
. 10.1115/1.4047047
36.
Chang
,
C. L.
,
Lee
,
J. W.
, and
Tseng
,
M. D.
,
2009
, “
Microstructure, Corrosion and Tribological Behaviors of TiAlSiN Coatings Deposited by Cathodic Arc Plasma Deposition
,”
Thin Solid Films
,
517
(
17
), pp.
5231
5236
. 10.1016/j.tsf.2009.03.082
37.
Tsai
,
Y. Z.
, and
Duh
,
J. G.
,
2010
, “
Tribological Behavior of CrAlSiN/W2N Multilayer Coatings Deposited by DC Magnetron Sputtering
,”
Thin Solid Films
,
518
(
24
), pp.
7523
7526
. 10.1016/j.tsf.2010.05.038
38.
Wang
,
X.
,
Wang
,
C.
,
Shen
,
X.
, and
Sun
,
F.
,
2018
, “
High-Speed Drawing of Al Alloy Wire by Diamond-Coated Drawing Die Under Environmentally Friendly Water-Based Emulsion Lubrication
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
124502
. 10.1115/1.4041477
39.
Vetter
,
J.
,
2014
, “
60 Years of DLC Coatings: Historical Highlights and Technical Review of Cathodic Arc Processes to Synthesize Various DLC Types, and Their Evolution for Industrial Applications
,”
Surf. Coat. Technol.
,
257
, pp.
213
240
. 10.1016/j.surfcoat.2014.08.017
40.
Lukaszkowicz
,
K.
,
Sondor
,
J.
,
Balin
,
K.
, and
Kubacki
,
J.
,
2014
, “
Characteristics of CrAlSiN + DLC Coating Deposited by Lateral Rotating Cathode Arc PVD and PACVD Process
,”
Appl. Surf. Sci.
,
312
, pp.
126
133
. 10.1016/j.apsusc.2014.03.024
41.
Wang
,
Y.
,
Li
,
Z.
,
Du
,
J.
,
Hua
,
Y.
, and
Wang
,
B.
,
2011
, “
(Ti,Al,Si,C)N Nanocomposite Coatings Synthesized by Plasma-Enhanced Magnetron Sputtering
,”
Appl. Surf. Sci.
,
258
(
1
), pp.
456
460
. 10.1016/j.apsusc.2011.08.094
42.
Kuptsov
,
K. A.
,
Kiryukhantsev-Korneev
,
P. V.
,
Sheveyko
,
A. N.
, and
Shtansky
,
D. V.
,
2015
, “
Structural Transformations in TiAlSiCN Coatings in the Temperature Range 900–1600 °C
,”
Acta Mater.
,
83
, pp.
408
418
. 10.1016/j.actamat.2014.10.007
43.
Xie
,
Z. W.
,
Wang
,
L. P.
,
Wang
,
X. F.
,
Huang
,
L.
,
Lu
,
Y.
, and
Yan
,
J. C.
,
2011
, “
Influence of High Temperature Annealing on the Structure, Hardness and Tribological Properties of Diamond-Like Carbon and TiAlSiCN Nanocomposite Coatings
,”
Appl. Surf. Sci.
,
258
(
3
), pp.
1206
1211
. 10.1016/j.apsusc.2011.09.072
44.
Pemmasani
,
S. P.
,
Rajulapati
,
K. V.
,
Ramakrishna
,
M.
,
Valleti
,
K.
,
Gundakaram
,
R. C.
, and
Joshi
,
S. V.
,
2013
, “
Characterization of Multilayer Nitride Coatings by Electron Microscopy and Modulus Mapping
,”
Mater. Charact.
,
81
, pp.
7
18
. 10.1016/j.matchar.2013.04.003
45.
Anders
,
A.
,
2008
,
Cathodic Arcs- From Fractal Spots to Energetic Condensation
,
Springer Series on Atomic, Optical, and Plasma Physics, Springer
,
New York
.
46.
Forsich
,
C.
,
Dipolt
,
C.
,
Heim
,
D.
,
Mueller
,
T.
,
Gebeshuber
,
A.
,
Holecek
,
R.
, and
Lugmair
,
C.
,
2014
, “
Potential of Thick a-C:H:Si Films as Substitute for Chromium Plating
,”
Surf. Coat. Technol.
,
241
, pp.
86
92
. 10.1016/j.surfcoat.2013.11.011
47.
Silva
,
W. M.
,
Jesus
,
L. M.
,
Carneiro
,
J. R.
,
Souza
,
P. S.
,
Martins
,
P. S.
, and
Trava-Airoldi
,
V. J.
,
2015
, “
Performance of Carbide Tools Coated With DLC in the Drilling of SAE 323 Aluminum Alloy
,”
Surf. Coat. Technol.
,
284
, pp.
404
409
. 10.1016/j.surfcoat.2015.09.061
48.
Tallant
,
D. R.
,
Parmeter
,
J. E.
,
Siegal
,
M. P.
, and
Simpson
,
R. L.
,
1995
, “
The Thermal Stability of Diamond-Like Carbon
,”
Diamond Relat. Mater
,
4
(
3
), pp.
191
199
. 10.1016/0925-9635(94)00243-6
You do not currently have access to this content.