Abstract

The increasing usage of cobot applications reshapes work environments and working conditions, requiring specific advancements in organizational practices for health and safety. Enterprises should shift from a technocentric risk management approach to considering cobot application as socio-technical systems, for which a resilience engineering approach is beneficial. This study presents an instantiation of the resilience analysis grid in cobot applications with the aim of measuring resilience potentials in terms of the four cornerstones of resilience engineering (respond, learn, monitor, and anticipate). The assessment has been provided via a questionnaire to 15 companies making use of cobot applications. Results revealed that companies mainly focus on the risk assessment of cobot applications with a traditional view of machine-centric safety, paying less attention to assessing contexts and process variables. This observation seems to arise mainly due to the lack of formally available safety methods or limited guidance from technical standards. Additionally, traditional industrial approaches to risk management lack monitoring of several risks that are essential for managing resilience, defined as the adaptive capacity of people, organizations, and human–machine systems. In addition, companies strongly rely on data from the cobot manufacturer for their safety assessment. The resilience analysis grid was confirmed as a valuable assessment tool for the participating companies to identify improvement areas and assess health and safety from a resilience engineering perspective.

References

1.
Vicentini
,
F.
,
2021
, “
Collaborative Robotics: A Survey
,”
ASME J. Mech. Des.
,
143
(
4
), p.
040802
.
2.
Adriaensen
,
A.
,
Costantino
,
F.
,
Di Gravio
,
G.
, and
Patriarca
,
R.
,
2022
, “
Teaming With Industrial Cobots: A Socio-technical Perspective on Safety Analysis
,”
Hum. Factors Ergon. Manuf.
,
32
(
2
), pp.
173
198
.
3.
Coronado
,
E.
,
Kiyokawa
,
T.
,
Ricardez
,
G. A. G.
,
Ramirez-Alpizar
,
I. G.
,
Venture
,
G.
, and
Yamanobe
,
N.
,
2022
, “
Evaluating Quality in Human–Robot Interaction: A Systematic Search and Classification of Performance and Human-Centered Factors, Measures and Metrics Towards an Industry 5.0
,”
J. Manuf. Syst.
,
63
(
4
), pp.
392
410
.
4.
Association for Advancing Automation
,
2004
, “
Robot Safety and You: Examples of Real-Life Accidents We Can Learn From
.”
5.
Kim
,
W.
,
2020
, “
The Risk Analysis for the Introduction of Collaborative Robots in the Republic of Korea
,”
Ph.D. thesis
,
Iowa State University
,
Ames, IA
.
6.
Pauliková
,
A.
,
Babel’ová
,
Z. G.
, and
Ubárová
,
M.
,
2021
, “
Analysis of the Impact of Human–Cobot Collaborative Manufacturing Implementation on the Occupational Health and Safety and the Quality Requirements
,”
Int. J. Environ. Res. Public Health
,
18
(
4
), pp.
1
15
.
7.
IFR
,
2018
, “
Global Industrial Robot Sales Doubled Over the Past Five Years
,”
International Federation of Robotics
.
8.
Benotsmane
,
R.
,
Dudás
,
L.
, and
Kovács
,
G.
,
2018
, “
Collaborating Robots in Industry 4.0 Conception
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
448
, pp.
0
9
.
9.
Chemweno
,
P.
,
Pintelon
,
L.
, and
Decre
,
W.
,
2020
, “
Orienting Safety Assurance With Outcomes of Hazard Analysis and Risk Assessment: A Review of the ISO 15066 Standard for Collaborative Robot Systems
,”
Saf. Sci.
,
129
(
9
), p.
104832
.
10.
Guiochet
,
J.
,
Machin
,
M.
, and
Waeselynck
,
H.
,
2017
, “
Safety-Critical Advanced Robots: A Survey
,”
Rob. Auton. Syst.
,
94
(
8
), pp.
43
52
.
11.
Chacón
,
A.
,
Angulo
,
C.
, and
Ponsa
,
P.
,
2020
, “Developing Cognitive Advisor Agents for Operators in Industry 4.0,”
New Trends in the Use of Artificial Intelligence for the Industry 4.0
,
L. M.
Martinez
,
R. A
Osornio-Rios
, and
M. D.
Prieto
, eds.,
IntechOpen
,
London, UK
, pp.
127
142
.
12.
Cohen
,
Y.
,
Shoval
,
S.
,
Faccio
,
M.
, and
Minto
,
R.
,
2021
, “
Deploying Cobots in Collaborative Systems: Major Considerations and Productivity Analysis
,”
Int. J. Prod. Res.
,
60
(
6
), pp.
1815
1831
.
13.
Costantino
,
F.
,
Falegnami
,
A.
,
Fedele
,
L.
,
Bernabei
,
M.
,
Stabile
,
S.
, and
Bentivenga
,
R.
,
2021
, “
New and Emerging Hazards for Health and Safety Within Digitalized Manufacturing Systems
,”
Sustainability
,
13
(
19
), p.
10948
.
14.
Badri
,
A.
,
Boudreau-Trudel
,
B.
, and
Souissi
,
A. S.
,
2018
, “
Occupational Health and Safety in the Industry 4.0 Era: A Cause for Major Concern?
Saf. Sci.
,
109
(
11
), pp.
403
411
.
15.
Charalambous
,
G.
,
Fletcher
,
S.
, and
Webb
,
P.
,
2015
, “
Identifying the Key Organisational Human Factors for Introducing Human–Robot Collaboration in Industry: An Exploratory Study
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9–12
), pp.
2143
2155
.
16.
Dede
,
G.
,
Mitropoulou
,
P.
,
Nikolaidou
,
M.
,
Kamalakis
,
T.
, and
Michalakelis
,
C.
,
2021
, “
Safety Requirements for Symbiotic Human–Robot Collaboration Systems in Smart Factories: A Pairwise Comparison Approach to Explore Requirements Dependencies
,”
Requir. Eng.
,
26
(
1
), pp.
115
141
.
17.
Hulme
,
A.
,
McLean
,
S.
,
Dallat
,
C.
,
Walker
,
G. H.
,
Waterson
,
P.
,
Stanton
,
N. A.
, et al.
,
2021
, “
Systems Thinking-Based Risk Assessment Methods Applied to Sports Performance: A Comparison of STPA, EAST-BL, and Net-HARMS in the Context of Elite Women’s Road Cycling
,”
Appl. Ergon.
,
91
(
2
), p.
103297
.
18.
Waterson
,
P.
,
Robertson
,
M. M.
,
Cooke
,
N. J.
,
Militello
,
L.
,
Roth
,
E.
, and
Stanton
,
N. A.
,
2015
, “
Defining the Methodological Challenges and Opportunities for an Effective Science of Sociotechnical Systems and Safety
,”
Ergonomics
,
58
(
4
), pp.
565
599
.
19.
Hollnagel
,
E.
,
2008
, “
The Changing Nature of Risks
,”
Ergon. Aust. J.
,
22
(
1–2
), pp.
33
46
.
20.
Borys
,
D.
,
Else
,
D.
, and
Leggett
,
S.
,
2009
, “
The Fifth Age of Safety: The Adaptive Age
,”
J. Heal Serv. Res. Policy
,
1
(
1
), pp.
19
27
.
21.
Sgarbossa
,
F.
,
Grosse
,
E. H.
,
Neumann
,
W. P.
,
Battini
,
D.
, and
Glock
,
C. H.
,
2020
, “
Human Factors in Production and Logistics Systems of the Future
,”
Annu. Rev. Control
,
49
, pp.
295
305
.
22.
Gualtieri
,
L.
,
Rauch
,
E.
, and
Vidoni
,
R.
,
2021
, “
Emerging Research Fields in Safety and Ergonomics in Industrial Collaborative Robotics: A Systematic Literature Review
,”
Rob. Comput. Integr. Manuf.
,
67
(
2
), p.
101998
.
23.
Adriaensen
,
A.
,
Decré
,
W.
, and
Pintelon
,
L.
,
2019
, “
Can Complexity-Thinking Methods Contribute to Improving Occupational Safety in Industry 4.0? A Review of Safety Analysis Methods and Their Concepts
,”
Safety
,
5
(
4
), p.
65
.
24.
Lu
,
Y.
,
Zheng
,
H.
,
Chand
,
S.
,
Xia
,
W.
,
Liu
,
Z.
,
Xu
,
X.
,
Wang
,
L.
,
Qin
,
Z.
, and
Bao
,
J.
,
2022
, “
Outlook on Human-Centric Manufacturing Towards Industry 5.0
,”
J. Manuf. Syst.
,
62
(
1
), pp.
612
627
.
25.
Wang
,
B.
,
Zheng
,
P.
,
Yin
,
Y.
,
Shih
,
A.
, and
Wang
,
L.
,
2022
, “
Toward Human-Centric Smart Manufacturing: A Human-Cyber-Physical Systems (HCPS) Perspective
,”
J. Manuf. Syst.
,
63
(
4
), pp.
471
490
.
26.
de Roure
,
D.
,
Page
,
K. R.
,
Radanliev
,
P.
, and
van Kleek
,
M.
,
2019
, “
Complex Coupling in Cyber-Physical Systems and the Threats of Fake Data
,”
Living in the Internet of Things (IoT 2019)
,
London
,
May 1–2
.
27.
Patriarca
,
R.
,
Falegnami
,
A.
,
Costantino
,
F.
,
Di Gravio
,
G.
,
De Nicola
,
A.
, and
Villani
,
M. L.
,
2021
, “
WAX: An Integrated Conceptual Framework for the Analysis of Cyber-Socio-Technical Systems
,”
Saf. Sci.
,
136
(
4
), p.
105142
.
28.
Hollnagel
,
E.
,
Pariès
,
J.
,
Woods
,
D.
, and
Wreathall
,
J.
,
2011
,
Resilience Engineering in Practice: A Guidebook
,
CRC Press
,
London
.
29.
Emery
,
F. E.
,
1972
, “Characteristics of Sociotechnical Systems,”
Des. Jobs
,
L. E.
Davis
, and
J. C.
Taylor
, eds.,
Penguin Books
,
Harmondsworth
, pp.
157
186
.
30.
Trist
,
E. L.
, and
Bamforth
,
K. W.
,
1951
, “
Some Social and Psychological Consequences of the Longwall Method of Coal-Getting
,”
Hum. Relat.
,
4
(
1
), pp.
3
38
.
31.
Margherita
,
E. G.
, and
Braccini
,
A. M.
,
2021
, “
Socio-technical Perspectives in the Fourth Industrial Revolution—Analysing the Three Main Visions: Industry 4.0, the Socially Sustainable Factory of Operator 4.0 and Industry 5.0
,”
Proceedings of the 7th International Work on Socio-technical Perspective in IS Development (STPIS 2021)
,
Oct. 14–15
.
32.
Kadir
,
B. A.
,
Broberg
,
O.
, and
Souza Da Conceição
,
C.
,
2018
, “
Designing Human–Robot Collaborations in Industry 4.0: Explorative Case Studies
,”
Proceedings of the Design 2018 15th International Design Conference
,
Dubrovnik, Croatia
,
May 21–24
, pp.
601
610
.
33.
Ian Noy
,
Y.
,
Hettinger
,
L. J.
,
Dainoff
,
M. J.
,
Carayon
,
P.
,
Leveson
,
N. G.
,
Robertson
,
M. M.
, and
Courtney
,
T. K.
,
2015
, “
Editorial: Emerging Issues in Sociotechnical Systems Thinking and Workplace Safety
,”
Ergonomics
,
58
(
4
), pp.
543
547
.
34.
Jones
,
A. T.
,
Romero
,
D.
, and
Wuest
,
T.
,
2018
, “
Modeling Agents as Joint Cognitive Systems in Smart Manufacturing Systems
,”
Manuf. Lett.
,
17
(
8
), pp.
6
8
.
35.
Vicentini
,
F.
,
2020
, “
Terminology in Safety of Collaborative Robotics
,”
Rob. Comput. Integr. Manuf.
,
63
(
8
), p.
101921
.
36.
Kadir
,
B. A.
,
Broberg
,
O.
, and
Conceição
,
C. S.
,
2019
, “
Current Research and Future Perspectives on Human Factors and Ergonomics in Industry 4.0
,”
Comput. Ind. Eng.
,
137
(
11
), p.
106004
.
37.
Patriarca
,
R.
,
Falegnami
,
A.
,
Costantino
,
F.
, and
Bilotta
,
F.
,
2018
, “
Resilience Engineering for Socio-technical Risk Analysis: Application in Neuro-surgery
,”
Reliab. Eng. Syst. Saf.
,
180
(
12
), pp.
321
335
.
38.
Hulme
,
A.
,
Stanton
,
N. A.
,
Walker
,
G. H.
,
Waterson
,
P.
, and
Salmon
,
P. M.
,
2019
, “
What Do Applications of Systems Thinking Accident Analysis Methods Tell Us About Accident Causation? A Systematic Review of Applications Between 1990 and 2018
,”
Saf. Sci.
,
117
(
8
), pp.
164
183
.
39.
Patriarca
,
R.
,
Di Gravio
,
G.
,
Costantino
,
F.
,
Falegnami
,
A.
, and
Bilotta
,
F.
,
2018
, “
An Analytic Framework to Assess Organizational Resilience
,”
Saf. Health Work
,
9
(
3
), pp.
265
276
.
40.
Woods
,
D. D.
,
2006
, “
Engineering Organizational Resilience to Enhance Safety: A Progress Report on the Emerging Field of Resilience Engineering
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
,
San Francisco, CA
,
Oct. 16–20
, pp.
2237
2241
.
41.
Dekker
,
S.
,
2019
,
Foundations of Safety Science: A Century of Understanding Accidents and Disasters
,
CRC Press
,
Boca Raton, London, New York
.
42.
Patriarca
,
R.
,
Bergström
,
J.
,
Di Gravio
,
G.
, and
Costantino
,
F.
,
2018
, “
Resilience Engineering: Current Status of the Research and Future Challenges
,”
Saf. Sci.
,
102
(
2
), pp.
79
100
.
43.
Woods
,
D.
,
2015
, “
Four Concepts for Resilience and the Implications for the Future of Resilience Engineering
,”
Reliab. Eng. Syst. Saf.
,
141
(
9
), pp.
5
9
.
44.
Neumann
,
W. P.
,
Winkelhaus
,
S.
,
Grosse
,
E. H.
, and
Glock
,
C. H.
,
2021
, “
Industry 4.0 and the Human Factor—A Systems Framework and Analysis Methodology for Successful Development
,”
Int. J. Prod. Econ.
,
233
, p.
107992
.
45.
Adriaensen
,
A.
,
Berx
,
N.
,
Pintelon
,
L.
,
Costantino
,
F.
,
Di Gravio
,
G.
, and
Patriarca
,
R.
,
2022
, “
Interdependence Analysis in Collaborative Robot Applications From a Joint Cognitive Functional Perspective
,”
Int. J. Ind. Ergon.
,
90
(
7
), p.
103320
.
46.
Hollnagel
,
E.
,
Leonhardt
,
J.
, and
Licu
,
T.
,
2021
,
The Systemic Potentials Management: Building a Basis for Resilient Performance
,
Brussels
.
47.
Woods
,
D.
, and
Hollnagel
,
E.
,
2006
,
Joint Cognitive Systems: Patterns in Cognitive Systems Engineering
,
CRC Press-Taylor & Francis Group
,
Boca Raton, FL
.
48.
Herrera
,
I. A.
,
Pasquini
,
A.
,
Ragosta
,
M.
, and
Vennesland
,
A.
,
2014
, “
The SCALES Framework for Identifying and Extracting Resilience Related Indicators: Preliminary Findings of a Go-Around Case Study
,”
SIDS 2014—Proc. SESAR Innov. Days
,
Madrid, Spain
,
Nov. 25– 27
.
49.
Van Der Beek
,
D.
, and
Schraagen
,
J. M.
,
2015
, “
ADAPTER: Analysing and Developing Adaptability and Performance in Teams to Enhance Resilience
,”
Reliab. Eng. Syst. Saf.
,
141
(
9
), pp.
33
44
.
50.
Apneseth
,
K.
,
Wahl
,
A. M.
, and
Hollnagel
,
E.
,
2013
,
Oil and Gas, Technology and Humans
,
CRC Press
,
London
.
51.
Ljungberg
,
D.
,
Lundh
,
V.
,
Valentin
,
H.
,
Examinator
,
P.
, and
Andersson Granberg
,
T.
,
2018
,
Resilience Engineering Within ATM-Development, Adaption, and Application of the Resilience Analysis Grid (RAG)
,
Linköpings Universitet
,
Norrköping
.
52.
Safiid
,
M.
,
Thude
,
B. R.
,
Brandt
,
F.
, and
Clay-Williams
,
R.
,
2022
, “
The Application of Resilience Assessment Grid in Healthcare: A Scoping Review
,”
PLOS
.
53.
Klockner
,
K.
and
Meredith
,
P.
,
2020
, “
Measuring Resilience Potentials: A Pilot Program Using the Resilience Assessment Grid
,”
Safety
,
6
(
4
) .
54.
Rodríguez
,
M.
,
Lawson
,
E.
, and
Butler
,
D.
,
2019
, “
A Study of the Resilience Analysis Grid Method and Its Applicability to the Water Sector in England and Wales
,”
Water Environ. J.
,
34
(
4
), pp.
623
633
.
55.
Saris
,
W. E.
, and
Gallhofer
,
I. N.
,
2014
,
Design, Evaluation, and Analysis of Questionnaires for Survey Research
, 2nd. ed.,
John Wiley & Sons
,
Hoboken, NJ
.
56.
Moppett
,
I. K.
, and
Shorrock
,
S. T.
,
2018
, “
Working Out Wrong-Side Blocks
,”
Anaesthesia
,
73
(
4
), pp.
407
420
.
57.
Codó
,
E.
,
2008
, “Interviews and Questionnaires,”
The Blackwell Guide to Research Methods in Bilingualism and Multilingualism
,
L.
Wei
, and
M. G.
Moyer
, eds.,
COS Printers
,
Singapore
, pp.
158
176
.
58.
Bertoni
,
V. B.
,
Ransolin
,
N.
,
Wachs
,
P.
, and
Righi
,
A. W.
,
2021
, “
Resilience, Safety and Health: Reflections About Covid-19’ Assistance
,”
Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021)
,
Online
,
June 13–18
.
59.
Falegnami
,
A.
,
Bilotta
,
F.
,
Pugliese
,
F.
,
Costantino
,
F.
,
Di Gravio
,
G.
,
Tronci
,
M.
, and
Patriarca
,
R.
,
2018
, “
A Multicountry Comparative Survey About Organizational Resilience in Anaesthesia
,”
J. Eval. Clin. Pract.
,
24
(
6
), pp.
1347
1357
.
60.
Accou
,
B.
, and
Carpinelli
,
F.
,
2022
, “
Systematically Investigating Human and Organisational Factors in Complex Socio-technical Systems by Using the ‘SAfety FRactal ANalysis’ Method
,”
Appl. Ergon.
,
100
(
4
), p.
103662
.
61.
Simoens
,
M. C.
,
Fuenfschilling
,
L.
, and
Leipold
,
S.
,
2022
, “
Discursive Dynamics and Lock-ins in Socio-Technical Systems: An Overview and a Way Forward
,”
Sustain. Sci.
,
17
(
5
), pp.
1841
1853
.
62.
Tian
,
J.
, and
Dai
,
Y.
,
2022
, “
Looking at Resilience of Socio-technical Systems From the View of Coordinated Control
,”
Cogn. Technol. Work
,
24
(
1
), pp.
147
160
.
63.
Choi
,
B. C.
, and
Pak
,
A. W.
,
2005
, “
CDC for a Catalog of Biases in Questionnaires
,”
Prev Chronic Dis
,
2
(
1
).
64.
World Economic Forum
,
2022
, “
Shaping the Future of Advanced Manufacturing and Value Chains
.”
65.
Hollnagel
,
E.
,
2017
, “The Resilience Analysis Grid,”
Resilience Engineering in Practice
,
E.
Hollnagel
,
J.
Pariès
,
D.
Woods
, and
J.
Wreathall
, eds., 2nd ed.
Ashgate
,
Farnham, UK
, pp.
275
296
.
66.
Golan
,
M.
,
Cohen
,
Y.
, and
Singer
,
G.
,
2020
, “
A Framework for Operator–Workstation Interaction in Industry 4.0
,”
Int. J. Prod. Res.
,
58
(
8
), pp.
2421
2432
.
67.
Psarakis
,
L.
,
Nathanael
,
D.
, and
Marmaras
,
N.
,
2022
, “
Fostering Short-Term Human Anticipatory Behavior in Human–Robot Collaboration
,”
Int. J. Ind. Ergon.
,
87
(
1
), p.
103241
.
68.
Bi
,
Z. M.
,
Luo
,
M.
,
Miao
,
Z.
,
Zhang
,
B.
,
Zhang
,
W. J.
, and
Wang
,
L.
,
2021
, “
Safety Assurance Mechanisms of Collaborative Robotic Systems in Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
67
(
2
), p.
102022
.
69.
ISO (International Organization for Standardization)
,
2016
, “
ISO/TS 15066 Robots and Robotic Devices—Collaborative Robots
.”
70.
Faccio
,
M.
,
Granata
,
I.
,
Menini
,
A.
,
Milanese
,
M.
,
Rossato
,
C.
,
Bottin
,
M.
,
Minto
,
R.
, et al
,
2022
, “
Human Factors in Cobot Era: A Review of Modern Production Systems Features
,”
J. Intell. Manuf.
,
34
(
1
), pp.
85
106
.
71.
Liu
,
L.
,
Guo
,
F.
,
Zou
,
Z.
, and
Duffy
,
V. G.
,
2022
, “
Application, Development and Future Opportunities of Collaborative Robots (Cobots) in Manufacturing: A Literature Review
,”
Int. J. Hum. Comput. Interact
, pp.
1
18
.
72.
Berx
,
N.
,
Decré
,
W.
,
Morag
,
I.
,
Chemweno
,
P.
, and
Pintelon
,
L.
,
2022
, “
Identification and Classification of Risk Factors for Human–Robot Collaboration From a System-Wide Perspective
,”
Comput. Ind. Eng.
,
163
, p.
107827
.
73.
Eurocontrol
,
2009
, “
A White Paper on Resilience Engineering for ATM
,”
Brussels
.
You do not currently have access to this content.