Abstract

Through-tool minimum quantity lubrication (MQL) drilling has been used in industry for decades, but little information is available on the coolant channel design and the effect on fluid distribution due to the inability of in-situ measurement. This study utilizes an Euler–Lagrange computational fluid dynamics (CFD) model to uncover the two-phase flow behavior in MQL drilling. Air is the primary phase modeled as a compressible and turbulent flow. The lubricant droplets are simulated as discrete particles with a proper size distribution. Two-way coupling and droplet-wall interactions are both considered. The results show that the primary phase can reach velocities in the transonic region and is dependent on the helical path of the channel. In addition, most of the lubricant droplets (>95%) impact the channel wall to form fluid film instead of following the air stream. In the cutting zone, droplets can hardly reach the cutting edges in both circular and triangular channel shapes. Finally, a custom-made drilling testbed, along with a transparent work-material simulant, is used to observe and qualitatively validate these results.

References

1.
Filipovic
,
A.
, and
Stephenson
,
D. A.
,
2006
, “
Minimum Quantity Lubrication (MQL) Applications in Automotive Power-Train Machining
,”
Mach. Sci. Technol.
,
10
(
1
), pp.
3
22
.
2.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
2018
,
Metal Cutting Theory and Practice
,
CRC Press
.
3.
Sharma
,
V. S.
,
Singh
,
G.
, and
Sørby
,
K.
,
2015
, “
A Review on Minimum Quantity Lubrication for Machining Processes
,”
Mater. Manuf. Processes
,
30
(
8
), pp.
935
953
.
4.
Raval
,
J. K.
,
Stephenson
,
D. A.
, and
Tai
,
B. L.
,
2020
, “
Effect of Oil Flow Rate on Production Through-Tool Dual Channel MQL Drilling
,”
ASME 2020 15th International Manufacturing Science and Engineering Conference
,
Virtual Online
,
Sept. 3
,
p. V001T05A007, ASME
.
5.
Masoudi
,
S.
,
Vafadar
,
A.
,
Hadad
,
M.
,
Jafarian
,
F.
,
2018
, “
Experimental Investigation Into the Effects of Nozzle Position, Workpiece Hardness, and Tool Type in MQL Turning of AISI 1045 Steel
,”
Mater. Manuf. Processes
,
33
(
9
), pp.
1011
1019
.
6.
Amiril
,
S.
,
Rahim
,
E.
, and
Hishamudin
,
A.
,
2019
, “
Effect of Nozzle Distance and Cutting Parameters on MQL Machining of AISI 1045
,”
J. Phys.: Conf. Ser.
,
1150
(
1
), pp.
012
045
.
7.
Duchosal
,
A.
,
Leroy
,
R.
,
Vecellio
,
L.
,
Louste
,
C.
,
Ranganathan
,
N.
,
2013
, “
An Experimental Investigation on Oil Mist Characterization Used in MQL Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
66
(
5
), pp.
1003
1014
.
8.
Nam
,
J. S.
,
Lee
,
P.-H.
, and
Lee
,
S. W.
,
2011
, “
Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Mach. Tools Manuf.
,
51
(
7–8
), pp.
649
652
.
9.
Pei
,
H. J.
,
Shen
,
C. G.
,
Zheng
,
W. J.
, and
Wang
,
G. C.
,
2010
, “
CFD Analysis and Experimental Investigation of Jet Orientation in MQL Machining
,”
Adv. Mater. Res.
,
135
, pp.
462
466
.
10.
Balan
,
A. S. S.
,
Kullarwar
,
T.
,
Vijayaraghavan
,
L.
,
Krishnamurthy
,
R.
,
2017
, “
Computational Fluid Dynamics Analysis of MQL Spray Parameters and Its Influence on Superalloy Grinding
,”
Mach. Sci. Technol.
,
21
(
4
), pp.
603
616
.
11.
Dean
,
W. R.
,
1927
, “
XVI. Note on the Motion of Fluid in a Curved Pipe
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
4
(
20
), pp.
208
223
.
12.
Germano
,
M.
,
1989
, “
The Dean Equations Extended to a Helical Pipe Flow
,”
J. Fluid Mech.
,
203
, pp.
289
305
.
13.
Yamamoto
,
K.
,
Wu
,
X.
,
Nozaki
,
K.
,
Hayamizu
,
Y.
,
2006
, “
Visualization of Taylor–Dean Flow in a Curved Duct of Square Cross-Section
,”
Fluid Dyn. Res.
,
38
(
1
), p.
1
.
14.
Yamamoto
,
K.
,
Yanase
,
S.
, and
Yoshida
,
T.
,
1994
, “
Torsion Effect on the Flow in a Helical Pipe
,”
Fluid Dyn. Res.
,
14
(
5
), p.
259
.
15.
Oezkaya
,
E.
,
Beer
,
N.
, and
Biermann
,
D.
,
2016
, “
Experimental Studies and CFD Simulation of the Internal Cooling Conditions When Drilling Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
52
65
.
16.
Johns
,
A.
,
Merson
,
E.
,
Royer
,
R.
,
Thompson
,
H.
, and
Summers
,
J.
,
2018
, “
A Numerical Investigation of Through-Tool Coolant Wetting Behaviour in Twist-Drilling
,”
J. Fluid Flow Heat Mass Transfer
,
5
, pp.
44
52
.
17.
Falcone
,
M.
,
Buss
,
L.
, and
Fritsching
,
U.
,
2022
, “
Eulerian–Lagrangian–Eulerian Simulations of Two-Phase Minimum Quantity Lubrication Flow in Internal Drill Bit Channels
,”
Processes
,
10
(
3
), p.
600
.
18.
Shao
,
Y.
,
Adetoro
,
O. B.
, and
Cheng
,
K.
,
2020
, “
Development of Multiscale Multiphysics-Based Modelling and Simulations With the Application to Precision Machining of Aerofoil Structures
,”
Eng. Comput.
,
38
(
3
), pp.
1330
1349
.
19.
Park
,
K.-H.
,
Olortegui-Yume
,
J. A.
,
Yoon
,
M.-C.
,
Kwon
,
P.
,
2010
, “
A Study on Droplets and Their Distribution for Minimum Quantity Lubrication (MQL)
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
824
833
.
20.
Park
,
K.-H.
,
Olortegui-Yume
,
J. A.
,
Joshi
,
S.
,
Kwon
,
P.
,
Yoon
,
M.-C.
,
Lee
,
G.-B.
, and
Park
,
S.-B.
,
2008
, “
Measurement of Droplet Size and Distribution for Minimum Quantity Lubrication (MQL)
,”
2008 International Conference on Smart Manufacturing Application
,
Goyangi, South Korea
,
Apr. 9–11
, IEEE.
21.
Dasch
,
J. M.
, and
Kurgin
,
S. K.
,
2010
, “
A Characterization of Mist Generated From Minimum Quantity Lubrication (MQL) Compared to Wet Machining
,”
Int. J. Mach. Mach. Mater.
,
7
(
1–2
), pp.
82
95
.
22.
Fluent
,
A.
,
2011
,
Ansys Fluent Theory Guide
,
15317
,
Ansys Inc.
,
USA
, pp.
724
746
.
23.
Stephenson
,
D. A.
,
Hughey
,
E.
, and
Hasham
,
A. A.
,
2019
, “
Air Flow and Chip Removal in Minimum Quantity Lubrication Drilling
,”
Procedia Manuf.
,
34
, pp.
335
342
.
24.
Johns
,
A. S.
,
2015
, “
Computational Fluid Dynamic Modelling and Optimisation of Internal Twist-Drill Coolant Channel Flow
,”
Ph.D. dissertation
,
University of Leeds
,
Leeds, UK
.
25.
Fallenstein
,
F.
, and
Aurich
,
J.
,
2014
, “
CFD Based Investigation on Internal Cooling of Twist Drills
,”
Procedia CIRP
,
14
, pp.
293
298
.
26.
Tai
,
B. L.
,
Dasch
,
J. M.
, and
Shih
,
A. J.
,
2011
, “
Evaluation and Comparison of Lubricant Properties in Minimum Quantity Lubrication Machining
,”
Mach. Sci. Technol.
,
15
(
4
), pp.
376
391
.
27.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
2005
,
Bubbles, Drops, and Particles
,
Dover Publications Inc.
,
Mineola, NY
.
28.
Stanton
,
D. W.
, and
Rutland
,
C. J.
,
1996
, “
Modeling Fuel Film Formation and Wall Interaction in Diesel Engines
,”
J. Engines
,
105
, pp.
808
824
. https://www.jstor.org/stable/44736319
29.
Naber
,
J.
, and
Reitz
,
R. D.
,
1988
, “
Modeling Engine Spray/Wall Impingement
,”
J. Engines
,
97
, Sec. 6, pp.
118
140
. https://www.jstor.org/stable/44547362
30.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
31.
Iskandar
,
Y.
, et al
,
2014
, “
Flow Visualization and Characterization for Optimized MQL Machining of Composites
,”
CIRP Ann.
,
63
(
1
), pp.
77
80
.
32.
Dasch
,
J.
, et al
,
2005
, “
Characterization of Fine Particles From Machining in Automotive Plants
,”
J. Occup. Environ. Hyg.
,
2
(
12
), pp.
609
625
.
33.
Raval
,
J. K.
, and
Tai
,
B. L.
,
2021
, “
An Optical Tomographic Method to Characterize the Mist Distribution in MQL Tools
,”
J. Manuf. Process.
,
62
, pp.
275
282
.
You do not currently have access to this content.