Abstract

Introduced is a three-dimensional, physics-based mathematical model capable of efficiently predicting self-excited chatter vibration phenomena in the cold rolling of metal strip and sheet. The described nonlinear chatter model combines the 3D mill structural dynamics behavior with the elastic–plastic rolling process dynamics to predict conditions of instability in a single-stand 4-high mill that can lead to both third-octave and fifth-octave chatter. Formulation of the 3D chatter model is achieved by coupling the dynamic simplified-mixed finite element method with a nonlinear roll-bite process dynamics model to capture self-exciting feedback interactions. In contrast to prior approaches to model chatter in the cold rolling of flat metals, the presented method abandons several simplifying assumptions, including 1D or 2D linear lumped parameter analyses, vertical symmetry of the upper and lower halves of the roll-stack, and continuous contact between the rolls and strip. The model is demonstrated for a single-stand 4-high rolling mill considering the detrimental third-octave self-excited chatter condition. Detailed stability analyses that show time histories of the 3D mill behaviors are presented, respectively, for stable, marginally stable, and unstable rolling speeds, and for changes in the lower housing stiffness to reflect more realistic, asymmetric rolling mill conditions.

References

1.
Zhao
,
H.
,
2008
, “
Regenerative Chatter in Cold Rolling
,” Ph.D. dissertation,
Northwestern University
,
Evanston, IL
.
2.
2016
, “Roll and Strip Chatter Marks; 5th Octave Chatter,” Innoval Technol. https://www.innovaltec.com/strip-chatter-marks-blog/, Accessed 26 March 2022.
3.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Review of Chatter Studies in Cold Rolling
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
), pp.
1499
1530
.
4.
Hu
,
P.-H.
,
1998
, “
Stability and Chatter in Rolling
,” Ph.D.,
Northwestern University
,
Evanston, IL
.
5.
Tlusty
,
J.
,
Chandra
,
G.
,
Critchley
,
S.
, and
Paton
,
D.
,
1982
, “
Chatter in Cold Rolling
,”
CIRP Ann.
,
31
(
1
), pp.
195
199
.
6.
Yun
,
I.-S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Chatter in the Strip Rolling Process, Part 1: Dynamic Model of Rolling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
330
336
.
7.
Tamiya
,
T.
,
Furui
,
K.
, and
Iida
,
H.
,
1980
, “
Analysis of Chattering Phenomenon in Cold Rolling
,”
Proceedings of the International Conference on Steel Rolling
,
Tokyo, Japan
,
Sept. 29–Oct. 4
, pp.
1191
1202
.
8.
Yun
,
I.-S.
,
Ehmann
,
K. F.
, and
Wilson
,
W. R. D.
,
1998
, “
Chatter in the Strip Rolling Process, Part 2: Dynamic Rolling Experiments
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
337
342
.
9.
Yun
,
I.-S.
,
Ehmann
,
K. F.
, and
Wilson
,
W. R. D.
,
1998
, “
Chatter in the Strip Rolling Process, Part 3: Chatter Model
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
343
348
.
10.
Wanheim
,
T.
, and
Bay
,
N.
,
1978
, “
A Model for Friction in Metal Forming Processes
,”
CIRP Ann. Manuf. Technol.
,
27
, pp.
189
194
.
11.
Bland
,
D. R.
, and
Ford
,
H.
,
1948
, “
The Calculation of Roll Force and Torque in Cold Strip Rolling With Tensions
,”
Proc. Inst. Mech. Eng.
,
159
(
1
), pp.
144
163
.
12.
Yarita
,
I.
,
Furukawa
,
K.
,
Seino
,
Y.
,
Takimoto
,
T.
,
Nakazato
,
Y.
, and
Nakagawa
,
K.
,
1978
, “
An Analysis of Chattering in Cold Rolling for Ultrathin Gauge Steel Strip
,”
Trans. Iron Steel Inst. Jpn.
,
18
(
1
), pp.
1
10
.
13.
Chefneux
,
L.
,
Fischbach
,
J.-P.
, and
Gouzou
,
J.
,
1984
, “
Study and Industrial Control of Chatter in Cold Rolling
,”
Iron Steel Eng.
,
61
(
11
), pp.
17
26
.
14.
Lin
,
Y.-J.
,
Suh
,
C. S.
,
Langari
,
R.
, and
Noah
,
S. T.
,
2003
, “
On the Characteristics and Mechanism of Rolling Instability and Chatter
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
778
786
.
15.
Kimura
,
Y.
,
Sodani
,
Y.
,
Nishiura
,
N.
,
Ikeuchi
,
N.
, and
Mihara
,
Y.
,
2003
, “
Analysis of Chatter in Tandem Cold Rolling Mills
,”
ISIJ Int.
,
43
(
1
), pp.
77
84
.
16.
Kapil
,
S.
,
Eberhard
,
P.
, and
Dwivedy
,
S. K.
,
2014
, “
Nonlinear Dynamic Analysis of a Parametrically Excited Cold Rolling Mill
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041012
.
17.
Hu
,
P.-H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process. Part I: Homogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
1
19
.
18.
Hu
,
P.-H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process. Part II: Inhomogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
21
31
.
19.
Kim
,
Y.
,
Kim
,
C.-W.
,
Lee
,
S.-J.
, and
Park
,
H.
,
2012
, “
Experimental and Numerical Investigation of the Vibration Characteristics in a Cold Rolling Mill Using Multibody Dynamics
,”
ISIJ Int.
,
52
(
11
), pp.
2042
2047
.
20.
Mehrabi
,
R.
,
Salimi
,
M.
, and
Ziaei-Rad
,
S.
,
2015
, “
Finite Element Analysis on Chattering in Cold Rolling and Comparison With Experimental Results
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061013
.
21.
Niroomand
,
M. R.
,
Forouzan
,
M. R.
, and
Salimi
,
M.
,
2015
, “
Theoretical and Experimental Analysis of Chatter in Tandem Cold Rolling Mills Based on Wave Propagation Theory
,”
ISIJ Int.
,
55
(
3
), pp.
637
646
.
22.
Brusa
,
E.
,
Lemma
,
L.
, and
Benasciutti
,
D.
,
2010
, “
Vibration Analysis of a Sendzimir Cold Rolling Mill and Bearing Fault Detection
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
224
(
8
), pp.
1645
1654
.
23.
Lu
,
X.
,
Sun
,
J.
,
Li
,
G.
,
Wang
,
Q.
, and
Zhang
,
D.
,
2019
, “
Dynamic Analysis of Vibration Stability in Tandem Cold Rolling Mill
,”
J. Mater. Process. Technol.
,
272
, pp.
47
57
.
24.
Sun
,
J.
,
Peng
,
Y.
, and
Liu
,
H.
,
2014
, “
Dynamic Characteristics of Cold Rolling Mill and Strip Based on Flatness and Thickness Control in Rolling Process
,”
J. Cent. South Univ.
,
21
(
2
), pp.
567
576
.
25.
Kapil
,
S.
,
Eberhard
,
P.
, and
Dwivedy
,
S. K.
,
2016
, “
Dynamic Analysis of Cold-Rolling Process Using the Finite-Element Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041002
.
26.
Brusa
,
E.
, and
Lemma
,
L.
,
2009
, “
Numerical and Experimental Analysis of the Dynamic Effects in Compact Cluster Mills for Cold Rolling
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2436
2445
.
27.
Patel
,
A.
,
Malik
,
A.
, and
Mathews
,
R.
,
2022
, “
Efficient Three-Dimensional Model to Predict Time History of Structural Dynamics in Cold Rolling Mills
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071009
.
28.
Zhang
,
F.
, and
Malik
,
A. S.
,
2021
, “
An Efficient Multi-scale Modeling Method That Reveals Coupled Effects Between Surface Roughness and Roll-Stack Deformation in Cold Sheet Rolling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101005
.
29.
Malik
,
A. S.
, and
Grandhi
,
R. V.
,
2008
, “
A Computational Method to Predict Strip Profile in Rolling Mills
,”
J. Mater. Process. Technol.
,
206
(
1–3
), pp.
263
274
.
30.
Zhang
,
F.
, and
Malik
,
A.
,
2018
, “
A Roll-Stack Contact Mechanics Model to Predict Strip Profile in Rolling Mills With Asymmetric, Continuously Variable Crown Rolls
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011008
.
31.
Patel
,
A.
,
Malik
,
A. S.
,
Mathews
,
R.
, and
Zhang
,
F.
,
2022
, “
Influence of Work-Roll Grinding Error and High-Fidelity Corrective Grinding in Cold Sheet Rolling
,”
Int. J. Adv. Manuf. Tech.
,
120
(
11–12
), pp.
7389
7413
.
32.
Linghu
,
K.
,
Jiang
,
Z.
,
Zhao
,
J.
,
Li
,
F.
,
Wei
,
D.
,
Xu
,
J.
,
Zhang
,
X.
, and
Zhao
,
X.
,
2014
, “
3D FEM Analysis of Strip Shape During Multi-pass Rolling in a 6-High CVC Cold Rolling Mill
,”
Int. J. Adv. Manuf. Tech.
,
74
(
9–12
), pp.
1733
1745
.
33.
Zhang
,
F.
,
Malik
,
A.
, and
Yu
,
H.
,
2018
, “
High-Fidelity Roll Profile Contact Modeling by Simplified Mixed Finite Element Method
,”
Proceeding of the 2018 ASME Manufacturing Science Engineering Conference (MSEC 2018)
,
College Station, TX
,
June 18–22
, p. V004T03A03.
34.
Paton
,
D. L.
, and
Critchley
,
S.
,
1985
, “
Tandem Mill Vibration: Its Cause and Control
,”
Proceedings of the 26th Mechanical Working and Steel Processing Conference
,
Chicago, IL
, Iron & Steel Society.
You do not currently have access to this content.