Abstract

This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading.

References

1.
Clauer
,
A. H.
,
1996
, “Laser Shock Peening for Fatigue Resistance,”
Surface Performance of Titanium
,
J. K.
Gregory
,
H. J.
Rack
, and
D.
Eylon
, eds.,
TMS
,
Warrendale, PA
, pp.
217
30
.
2.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Laser Shock Peening for Suppression of Hydrogen-Induced Martensitic Transformation in Stress Corrosion Cracking
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081015
.
3.
Zhang
,
W.
, and
Yao
,
Y. L.
,
2002
, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
369
378
.
4.
Lu
,
J. Z.
,
Deng
,
W. W.
,
Luo
,
K. Y.
,
Wu
,
L. J.
, and
Lu
,
H. F.
,
2017
, “
Surface EBSD Analysis and Strengthening Mechanism of AISI 304 Stainless Steel Subjected to Massive LSP Treatment With Different Pulse Energies
,”
Mater. Charact.
,
125
, pp.
99
107
.
5.
Clauer
,
A. H.
, and
Holbrook
,
J. H.
,
1981
, “Effects of Laser Induced Shock Waves on Metals,”
Shock Waves and High-Strain-Rate Phenomena in Metals
,
M. A.
Meyers
, and
L. E.
Murr
, eds.,
Plenum Publishing Corporation
,
New York
, pp.
675
703
.
6.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Material Influence on Mitigation of Stress Corrosion Cracking Via Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011002
.
7.
Shadangi
,
Y.
,
Chattopadhyay
,
K.
,
Rai
,
S. B.
, and
Singh
,
V.
,
2015
, “
Effect of Laser Shock Peening on Microstructure, Mechanical Properties and Corrosion Behavior of Interstitial Free Steel
,”
Surf. Coat. Technol.
,
280
, pp.
216
224
.
8.
Over
,
V.
, and
Yao
,
Y. L.
,
2022
, “
Laser Shock Peening Induced Back Stress Mitigation in Rolled Stainless Steel
,”
ASME J. Manuf. Sci. Eng.
,
144
(
6
), p.
061010
.
9.
Kalentics
,
N.
,
Boillat
,
E.
,
Ciric-Kostic
,
S.
,
Bogojevic
,
N.
, and
Loge
,
R. E.
,
2017
, “
Tailoring Residual Stress Profile of Selective Laser Melted Parts by Laser Shock Peening
,”
Addit. Manuf.
,
16
, pp.
90
97
.
10.
He
,
X.
,
Ye
,
Y. P.
, and
He
,
B. B.
,
2022
, “
A Review on the Science of Plastic Deformation in Laser-Based Additively Manufactured Steel
,”
J. Meter. Sci.
,
57
(
24
), pp.
10803
10835
.
11.
Pommier
,
B.
,
2000
, “
Bauschinger Effect of Alloys and Plasticity-Induced Crack Closure: A Finite Element Analysis
,”
FFEMS
,
23
, pp.
129
139
.
12.
Silva
,
F. S.
,
2007
, “
Fatigue Crack Propagation After Overloading and Underloading at Negative Stress Ratios
,”
Int. J. Fatigue
,
29
(
9–11
),
1757
1771
.
13.
Barros
,
P. D.
,
Alves
,
J. L.
,
Oliveira
,
M. C.
, and
Menezes
,
L. F.
,
2018
, “
Study on the Effect of Tension-Compression Asymmetry on the Cylindrical Cup Forming of an AA2090-T3 Alloy
,”
Int. J. Solids Struct.
,
151
,
135
144
.
14.
Charpentier
,
P. L.
,
2015
, “
Post-forming Monotonic and Cyclic Behavior in HSLA Steel Sheet After Large Deformations In-Plane Compression
,”
Int. J. Fatigue
,
79
, pp.
54
64
.
15.
Chen
,
J.
,
Yao
,
W.
, and
Gao
,
D.
,
2020
, “
Fatigue Life Evaluation of Tension-Compression Asymmetric Material Using Local Stress-Strain Method
,”
FFEMS
,
43
(
9
), pp.
1994
2005
.
16.
Grand View Research
,
2019
, “
3D Printing Metal Market Size, Share & Trends Analysis Report By Product (Titanium, Nickel), By Form (Filament, Powder), By Application (Aerospace & Defense, Medical & Dental), By Region, and Segment Forecasts, 2021–2028
.”
17.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
ASM Int.
,
23
(
6
), pp.
1917
1928
.
18.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2019
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.
19.
Bertsch
,
K. M.
,
Meric de Bellefon
,
G.
,
Kuehl
,
B.
, and
Thoma
,
D. J.
,
2020
, “
Origin of Dislocation Structures in an Additively Manufactured Austenitic Stainless Steel 316L
,”
Acta Mater.
,
199
, pp.
19
33
.
20.
Wang
,
G.
,
Ouyang
,
H.
,
Fan
,
C.
,
Guo
,
Q.
,
Li
,
Z.
, and
Yan
,
W.
,
2020
, “
The Origin of High-Density Dislocations in Additively Manufactured Metals
,”
Mater. Res. Lett.
,
4
(
3
), pp.
283
290
.
21.
Chen
,
W.
,
Voisin
,
T.
,
Zhang
,
Y.
,
Florien
,
J.
,
Spadaccini
,
C. M.
,
McDowell
,
D. L.
,
Zhu
,
T.
, and
Wang
,
Y. M.
,
2019
, “
Microscale Residual Stresses in Additively Manufactured Stainless Steel
,”
Nat. Commun.
,
10
, p.
4338
.
22.
Sun
,
Z.
,
Tan
,
X.
,
Tor
,
S. B.
, and
Chua
,
C. K.
,
2018
, “
Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting
,”
NPG Asia Mater.
,
10
(
4
), pp.
127
136
.
23.
Yang
,
M.
,
Pan
,
Y.
,
Yuan
,
F.
,
Zhu
,
Y.
, and
Wu
,
X.
,
2016
, “
Back Stress Strengthening and Strain Hardening in Gradient Structure
,”
Mater. Res. Lett.
,
4
(
3
), pp.
145
151
.
24.
Paul
,
S.
,
Liu
,
J.
,
Strayer
,
S. T.
,
Zhao
,
Y.
,
Sridar
,
S.
,
Klecka
,
M. A.
,
Xiong
,
W.
, and
To
,
C. A.
,
2017
, “
A Discrete Dendrite Dynamics Model for Epitaxial Columnar Grain Growth in Metal Additive Manufacturing With Application to Inconel
,”
Addit. Manuf.
,
36
, p.
101611
.
25.
Gorsse
,
S.
,
Hutchinson
,
C.
,
Goune
,
M.
, and
Banerjee
,
R.
,
2017
, “
Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
1443
1465
.
26.
Pauza
,
J. G.
,
Tayon
,
W. A.
, and
Rollett
,
A. D.
,
2021
, “
Computer Simulation of Microstructure Development in Powder-Bed Additive Manufacturing With Crystallographic Texture
,”
Model. Simul. Mater. Sci. Eng.
,
29
(
5
), p.
055019
.
27.
Moyle
,
M. S.
,
Haghdadi
,
N.
,
Liao
,
X. Z.
,
Ringer
,
S. P.
, and
Primig
,
S.
,
2022
, “
On the Microstructure and Texture Evolution in 17-4 pH Stainless Steel During Laser Powder Bed Fusion: Towards Textural Design
,”
J. Mater. Sci. Technol.
,
117
, pp.
183
195
.
28.
Saeidi
,
K.
,
Kevetkova
,
L.
,
Lofaj
,
F.
, and
Shen
,
Z.
,
2016
, “
Novel Ferritic Stainless Steel Formed by Laser Melting From Duplex Stainless Steel Powder With Advanced Mechanical Properties and High Ductility
,”
Mater. Sci. Eng.: A
,
665
, pp.
59
65
.
29.
Liu
,
C. Y.
,
Tong
,
J. D.
,
Jiang
,
M. G.
,
Chen
,
Z. W.
,
Xu
,
G.
,
Liao
,
H. B.
,
Wang
,
P.
,
Wang
,
X. Y.
,
Xu
,
M.
, and
Lao
,
C. S.
,
2019
, “
Effect of Scanning Strategy on Microstructure and Mechanical Properties of Selective Laser Melted Reduced Activation Ferritic/Martensitic Steel
,”
Mater. Sci. Eng.: A
,
766
, p.
138364
.
30.
Wang
,
Y. M.
,
Voisin
,
T.
,
McKeown
,
J. T.
,
Ye
,
J.
,
Calta
,
N. P.
,
Li
,
Z.
,
Zeng
,
Z.
, et al
,
2017
, “
Additively Manufactured Hierarchical Stainless Steels With High Strength and Ductility
,”
Nat. Mater.
,
17
, pp.
63
71
.
31.
Zhang
,
X. X.
,
Andra
,
H.
,
Harjo
,
S.
,
Gong
,
W.
,
Kawasaki
,
T.
,
Lutz
,
A.
, and
Lahres
,
M.
,
2021
, “
Quantifying Internal Strains, Stresses, and Dislocation Density in Additively Manufactured AlSi10Mg During Loading-Unloading-Reloading Deformation
,”
Mater. Des.
,
198
, p.
109339
.
32.
Kok
,
Y.
,
Tan
,
X. P.
,
Wang
,
P.
,
Nai
,
M. L. S.
,
Loh
,
N. H.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review
,”
Mater. Des.
,
139
, pp.
565
586
.
33.
Pham
,
M.-S.
,
Dvgyy
,
B.
,
Hooper
,
P. A.
,
Gourlay
,
C. M.
, and
Piglione
,
A.
,
2020
, “
The Role of Side-Branching in Microstructure Development in Laser Powder-Bed Fusion
,”
Nat. Commun.
,
11
(
1
), p.
749
.
34.
Im
,
Y.-D.
,
Kim
,
K.-H.
,
Jung
,
K.-H.
,
Lee
,
Y.-K.
, and
Song
,
K.-H.
,
2019
, “
Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel
,”
Metall. Mater. Trans. A
,
50
(
4
), pp.
2014
2021
.
35.
Nadammal
,
N.
,
Cabeza
,
S.
,
Mishurova
,
T.
,
Thiede
,
T.
,
Kromm
,
A.
,
Seyfert
,
C.
,
Farahbod
,
L.
,
Haberland
,
C.
,
Schneider
,
J. A.
,
Portella
,
P. D.
, and
Bruno
,
G.
,
2017
, “
Effect of Hatch Length on the Development of Microstructure, Texture and Residual Stresses in Selective Laser Melted Superalloy Inconel 718
,”
Mater. Des
,
134
, pp.
139
150
.
36.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
Residual Stress in Metal Additive Manufacturing
,”
Proc. CIRP
,
71
, pp.
348
353
.
37.
Parry
,
L.
,
Ashcroft
,
I. A.
, and
Wildman
,
R. D.
,
2016
, “
Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation
,”
Addit. Manuf.
,
12
(
A
), pp.
1
15
.
38.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
.
39.
Tran
,
H. T.
,
Chen
,
Q.
,
Mohan
,
J.
, and
To
,
A. C.
,
2020
, “
A New Method for Predicting Cracking at the Interface Between Solid and Lattice Support During Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101050
.
40.
Chen
,
S.
,
Gao
,
H.
,
Zhang
,
Y.
,
Wu
,
Q.
,
Gao
,
Z.
, and
Zhou
,
X.
,
2022
, “
Review on Residual Stresses in Metal Additive Manufacturing: Formation Mechanisms, Parameter Dependencies, Prediction and Control Approaches
,”
J. Mater. Res. Technol.
,
17
, pp.
2950
2974
.
41.
Fang
,
Z.-C.
,
Wu
,
Z.-L.
,
Huang
,
C.-G.
, and
Wu
,
C.-W.
,
2020
, “
Review on Residual Stress in Selective Laser Melting Additive Manufacturing of Alloy Parts
,”
Opt. Laser Technol.
,
129
, p.
106283
.
42.
Kalentics
,
N.
,
Boillat
,
E.
,
Peyre
,
P.
,
Gorny
,
C.
,
Kenel
,
C.
,
Leinenbach
,
C.
,
Jhabvala
,
J.
, and
Loge
,
R. E.
,
2017
, “
3D Laser Shock Peening—A New Method for the 3D Control of Residual Stresses in Selective Laser Melting
,”
Mater. Des.
,
130
, pp.
350
356
.
43.
Sealy
,
M. P.
,
Madireddy
,
G.
,
Williams
,
R. E.
,
Rao
,
P.
, and
Toursangsaraki
,
M.
,
2018
, “
Hybrid Processes in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
060801
.
44.
Peng
,
X.
,
Kong
,
L.
,
Fuh
,
J. Y. H.
, and
Wang
,
H.
,
2021
, “
A Review of Post-Processing Technologies in Additive Manufacturing
,”
J. Manuf. Mater. Process.
,
5
(
8
), p.
38
.
45.
Hackel
,
L.
,
Rankin
,
J. R.
,
Rubenchik
,
A.
,
King
,
W. E.
, and
Matthews
,
M.
,
2018
, “
Laser Peening: A Tool for Additive Manufacturing Post-Processing
,”
Addit. Manuf.
,
24
, pp.
67
75
.
46.
Munther
,
M.
,
Martin
,
T.
,
Tajyar
,
A.
,
Hackel
,
L.
,
Beheshti
,
A.
, and
Davami
,
K.
,
2020
, “
Laser Shock Peening and Its Effects on Microstructure and Properties of Additively Manufactured Metal Alloys: A Review
,”
Eng. Res. Express
,
2
(
2
), p.
022001
.
47.
Sealy
,
M. P.
,
Madireddy
,
G.
,
Li
,
C.
, and
Guo
,
Y. B.
,
2016
, “
Finite Element Modeling of Hybrid Additive Manufacturing by Laser Shock Peening
,”
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
306
316
.
48.
Kalentics
,
N.
,
Sohrabi
,
N.
,
Tabasi
,
H. G.
,
Griffiths
,
S.
,
Jamasp
,
J.
,
Leinenbach
,
C.
,
Burn
,
A.
, and
Loge
,
R. E.
,
2019
, “
Healing Cracks in Selective Laser Melting by 3D Laser Shock Peening
,”
Addit. Manuf.
,
30
, p.
100881
.
49.
du Plessis
,
A.
,
Glaser
,
D.
,
Moller
,
H.
,
Mathe
,
N.
,
Tshabalala
,
L.
,
Mfusi
,
B.
, and
Mostert
,
R.
,
2019
, “
Pore Closure Effect of Laser Shock Peening of Additively Manufactured AlSi10Mg
,”
3D Print. Addit. Manuf.
,
6
(
5
), pp.
245
252
.
50.
Guo
,
W.
,
Sun
,
R.
,
Song
,
B.
,
Zhu
,
Y.
,
Li
,
F.
,
Che
,
Z.
,
Li
,
B.
,
Guo
,
C.
,
Liu
,
L.
, and
Peng
,
P.
,
2018
, “
Laser Shock Peening of Laser Additive Manufactured Ti6Al4V Titanium Alloy
,”
Surf. Coat. Technol.
,
349
, pp.
503
510
.
51.
Luo
,
S.
,
He
,
W.
,
Chen
,
K.
,
Nie
,
X.
,
Zhou
,
L.
, and
Li
,
Y.
,
2018
, “
Regain the Fatigue Strength of Laser Additive Manufactured Ti Alloy Via Laser Shock Peening
,”
J. Alloys Compd.
,
750
, pp.
626
635
.
52.
Busi
,
M.
,
Kalentics
,
N.
,
Morgano
,
M.
,
Griffiths
,
S.
,
Tremsin
,
A. S.
,
Shinohara
,
T.
,
Loge
,
R.
,
Leinenbach
,
C.
, and
Strobl
,
M.
,
2021
, “
A Parametric Neutron Bragg Edge Imaging Study of Additively Manufactured Samples Treated by Laser Shock Peening
,”
Sci. Rep.
,
11
(
14919
).
53.
Lu
,
J.
,
Lu
,
H.
,
Xu
,
X.
,
Yao
,
J.
,
Cai
,
J.
, and
Luo
,
K.
,
2020
, “
High-Performance Integrated Additive Manufacturing With Laser Shock Peening-Induced Microstructural Evolution and Improvement in Mechanical Properties of Ti6Al4V Alloy Components
,”
Int. J. Mach. Tools Manuf.
,
148
, p.
103475
.
54.
Kalentics
,
N.
,
Huang
,
K.
,
Ortega Varela de Seijas
,
M.
,
Burn
,
A.
,
Romano
,
V.
, and
Loge
,
R. E.
,
2019
, “
Laser Shock Peening: A Promising Tool for Tailoring Metallic Microstructures in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
266
, pp.
612
618
.
55.
Pal
,
D.
, and
Stucker
,
B.
,
2013
, “
A Study of Subgrain Formation in Al 3003 H-18 Foils Undergoing Ultrasonic Additive Manufacturing Using a Dislocation Density Based Crystal Plasticity Finite Element Framework
,”
J. Appl. Phys.
,
113
(
20
), p.
203517
.
56.
Francois
,
M. M.
,
Sun
,
A.
,
King
,
W. E.
,
Henson
,
N. J.
,
Tourret
,
D.
,
Bronkhorst
,
C. A.
,
Carlson
,
N. N.
, et al
,
2017
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
),
198
206
.
57.
Kapoor
,
K.
,
Yoo
,
Y. S. J.
,
Book
,
T. A.
,
Kacher
,
J. P.
, and
Sangid
,
M. D.
,
2019
, “
Incorporating Grain-Level Residual Stresses and Validating a Crystal Plasticity Model of a Two-Phase Ti-6Al-4 V Alloy Produced Via Additive Manufacturing
,”
J. Mech. Phys. Solids
,
121
, pp.
447
462
.
58.
Lakshmanan
,
A.
,
Yaghoobi
,
M.
,
Stopka
,
K. S.
, and
Sundararaghavan
,
V.
,
2022
, “
Crystal Plasticity Finite Element Modeling of Grain Size and Morphology Effects on Yield Strength and Extreme Value Fatigue Response
,”
J. Mater. Res. Technol.
,
19
, pp.
3337
3354
.
59.
Acar
,
S. S.
,
Bulut
,
O.
, and
Yalcinkaya
,
T.
,
2022
, “
Crystal Plasticity Modeling of Additively Manufactured Metallic Microstructures
,”
Proc. Struct. Integr.
,
35
, pp.
219
227
.
60.
Zhang
,
J.
,
Li
,
J.
,
Wu
,
S.
,
Zhang
,
W.
,
Sun
,
J.
, and
Qian
,
G.
,
2022
, “
High-Cycle and Very-High-Cycle Fatigue Lifetime Prediction of Additively Manufactured AlSi10Mg Via Crystal Plasticity Finite Element Method
,”
Int. J. Fatigue
,
155
, p.
106577
.
61.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
,
1992
, “
Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals
,”
J. Mech. Phys. Solids
,
40
(
3
), pp.
537
569
.
62.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.
63.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. Lond.
,
241
(
1226
), pp.
376
396
.
64.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Metals
,
62
, pp.
307
324
.
65.
Espinosa
,
H. D.
,
Panico
,
M.
,
Berbenni
,
S.
, and
Schwarz
,
K. W.
,
2006
, “
Discrete Dislocation Dynamics Simulations to Interpret Plasticity Size and Surface Effects in Freestanding FCC Thin Films
,”
Int. J. Plast.
,
22
(
11
), pp.
2091
2117
.
66.
Hosford
,
W. F.
,
2010
,
Mechanical Behavior of Materials
,
Cambridge University Press
,
Cambridge
. Chap. 7.
67.
Chen
,
H.
,
Kysar
,
J.
, and
Yao
,
Y. L.
,
2004
, “
Characterization of Plastic Deformation Induced by Microscale Laser Shock Peening
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
713
723
.
You do not currently have access to this content.