Abstract

Bone tissue engineering has emerged as a promising strategy for the treatment of osseous fractures, defects, and ultimately diseases caused by, for example, bone tumor resection, accident trauma, and congenital malformation. Additive fabrication of stem cell-seeded, osteoconductive porous scaffolds has been an effective method in clinical practice for the treatment of bone pathologies (such as osteoporosis, osteoarthritis, and rheumatic diseases). Porosity is known to be one of the main morphological characteristics of bone tissues, which affects the functional performance of an implanted bone scaffold. Hence, in situ detection and quantification of scaffold porosity implemented to ensure functional integrity prior to implantation/surgery is an unavoidable need. The objective of this research work is to introduce a robust, image-based method for identification and subsequently characterization of the surface porosity and dimensional accuracy of additively manufactured bone tissue scaffolds, with a focus on pneumatic micro-extrusion (PME) process. It was observed that the presented method would be capable of detecting complex individual pores based on a micrograph. Using the proposed method, not only were scaffold pores detected, but also scaffold porosity was characterized on the basis of various defined quality metrics/traits (such as the relative standard deviation of distance to the nearest pore). The proposed method was validated by contrasting its performance in “surface pore detection” against that of a standard method, tested on a complex benchmark in four different simulated lighting environments. Besides, the performance of the method in terms of “pore filling” was compared to that of a standard method, tested on a real PME-fabricated bone scaffold. It was observed that the proposed method had a better performance in pore filling, detection, and consolidation. Overall, the outcomes of this work pave the way for high-resolution fabrication of patient-specific, structurally complex, and porous bone scaffolds with easily validatable, functional, and medical properties for the treatment of bone pathologies.

References

1.
Giannoudis
,
P. V.
,
Faour
,
O.
,
Goff
,
T.
,
Kanakaris
,
N.
, and
Dimitriou
,
R.
,
2011
, “
Masquelet Technique for the Treatment of Bone Defects: Tips-Tricks and Future Directions
,”
Injury
,
42
(
6
), pp.
591
598
.
2.
Pedrero
,
S. G.
,
Llamas-Sillero
,
P.
, and
Serrano-López
,
J.
,
2021
, “
A Multidisciplinary Journey Towards Bone Tissue Engineering
,”
Materials
,
14
(
17
), p.
4896
.
3.
Sun
,
Z.
,
Wu
,
F.
,
Gao
,
H.
,
Cui
,
K.
,
Xian
,
M.
,
Zhong
,
J.
,
Tian
,
Y.
,
Fan
,
S.
, and
Wu
,
G.
,
2020
, “
A Dexamethasone-Eluting Porous Scaffold for Bone Regeneration Fabricated by Selective Laser Sintering
,”
ACS Appl. Bio Mater.
,
3
(
12
), pp.
8739
8747
.
4.
Thadavirul
,
N.
,
Pavasant
,
P.
, and
Supaphol
,
P.
,
2014
, “
Development of Polycaprolactone Porous Scaffolds by Combining Solvent Casting, Particulate Leaching, and Polymer Leaching Techniques for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
,
102
(
10
), pp.
3379
3392
.
5.
Yu
,
M.
,
Yeow
,
Y. J.
,
Lawrence
,
L.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R.
,
2021
, “
Characterization of the Functional Properties of PCL Bone Scaffolds Fabricated Using Pneumatic Microextrusion
,”
ASME J. Micro- Nano-Manuf.
,
9
(
3
), p.
030905
.
6.
Murphy
,
C. M.
, and
O’Brien
,
F. J.
,
2010
, “
Understanding the Effect of Mean Pore Size on Cell Activity in Collagen-Glycosaminoglycan Scaffolds
,”
Cell Adhes. Migr.
,
4
(
3
), pp.
377
381
.
7.
Karageorgiou
,
V.
, and
Kaplan
,
D.
,
2005
, “
Porosity of 3D Biomaterial Scaffolds and Osteogenesis
,”
Biomaterials
,
26
(
27
), pp.
5474
5491
.
8.
O’Brien
,
F. J.
,
Harley
,
B.
,
Yannas
,
I. V.
, and
Gibson
,
L. J.
,
2005
, “
The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds
,”
Biomaterials
,
26
(
4
), pp.
433
441
.
9.
Baldwin
,
C. A.
,
Sederman
,
A. J.
,
Mantle
,
M. D.
,
Alexander
,
P.
, and
Gladden
,
L. F.
,
1996
, “
Determination and Characterization of the Structure of a Pore Space From 3D Volume Images
,”
J. Colloid Interface Sci.
,
181
(
1
), pp.
79
92
.
10.
e Silva
,
R.
,
Negri
,
R.
, and
de Mattos Vidal
,
D.
,
2019
, “
A New Image-Based Technique for Measuring Pore Size Distribution of Nonwoven Geotextiles
,”
Geosynth. Int.
,
26
(
3
), pp.
261
272
.
11.
Chukwuma
,
K.
,
Bordy
,
E. M.
, and
Coetzer
,
A.
,
2018
, “
Evolution of Porosity and Pore Geometry in the Permian Whitehill Formation of South Africa–A FE-SEM Image Analysis Study
,”
Mar. Pet. Geol.
,
91
, pp.
262
278
.
12.
Chen
,
Z.
,
Song
,
Y.
,
Jiang
,
Z.
,
Liu
,
S.
,
Li
,
Z.
,
Shi
,
D.
,
Yang
,
W.
,
Yang
,
Y.
,
Song
,
J.
, and
Gao
,
F.
,
2019
, “
Identification of Organic Matter Components and Organic Pore Characteristics of Marine Shale: A Case Study of Wufeng-Longmaxi Shale in Southern Sichuan Basin, China
,”
Mar. Pet. Geol.
,
109
, pp.
56
69
.
13.
Kim
,
F.
,
Moylan
,
S.
,
Garboczi
,
E.
, and
Slotwinski
,
J.
,
2017
, “
Investigation of Pore Structure in Cobalt Chrome Additively Manufactured Parts Using X-Ray Computed Tomography and Three-Dimensional Image Analysis
,”
Addit. Manuf.
,
17
, pp.
23
38
.
14.
Du Plessis
,
A.
,
Sperling
,
P.
,
Beerlink
,
A.
,
Tshabalala
,
L.
,
Hoosain
,
S.
,
Mathe
,
N.
, and
Le Roux
,
S. G.
,
2018
, “
Standard Method for MicroCT-Based Additive Manufacturing Quality Control 1: Porosity Analysis
,”
MethodsX
,
5
, pp.
1102
1110
.
15.
Léonard
,
F.
,
Tammas-Williams
,
S.
, and
Todd
,
I.
,
2016
, “
CT for Additive Manufacturing Process Characterisation: Assessment of Melt Strategies on Defect Population
,”
Proceedings of the 6th Conference on Industrial Computed Tomography (ICT 2016)
,
Wels, Austria
,
Feb. 9–12
, pp.
1
8
.
16.
Villarraga
,
H.
,
Lee
,
C.
,
Corbett
,
T.
,
Tarbutton
,
J. A.
, and
Smith
,
S. T.
,
2015
, “
Assessing Additive Manufacturing Processes with X-Ray CT Metrology
,”
Proceedings of the ASPE Spring Topical Meeting: Achieving Precision Tolerances in Additive Manufacturing
,
North Carolina State University
,
Raleigh
,
Apr. 26–29
,
ASPE
, pp.
116
121
.
17.
Holzmond
,
O.
, and
Li
,
X.
,
2017
, “
In Situ Real Time Defect Detection of 3D Printed Parts
,”
Addit. Manuf.
,
17
, pp.
135
142
.
18.
Aminzadeh
,
M.
,
2016
, “
A Machine Vision System for In-Situ Quality Inspection in Metal Powder-Bed Additive Manufacturing
,”
Doctoral Dissertation
,
Advisor: Dr. Thomas Kurfess, Georgia Institute of Technology
,
Atlanta, GA
. http://hdl.handle.net/1853/56291
19.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.
20.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
Proceedings of the 2012 International Solid Freeform Fabrication Symposium
, The University of Texas at Austin, TX
,
Aug. 22
,
University of Texas Libraries
, pp.
999
1014
.
21.
Craeghs
,
T.
,
Clijsters
,
S.
,
Kruth
,
J.-P.
,
Bechmann
,
F.
, and
Ebert
,
M.-C.
,
2012
, “
Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring
,”
Phys. Procedia
,
39
, pp.
753
759
.
22.
Bowoto
,
O. K.
,
Oladapo
,
B. I.
,
Zahedi
,
S.
,
Omigbodun
,
F. T.
, and
Emenuvwe
,
O. P.
,
2020
, “
Analytical Modelling of In Situ Layer-Wise Defect Detection in 3D-Printed Parts: Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
111
(
7
), pp.
2311
2321
.
23.
Beucher
,
S.
,
1979
, “
Use of Watersheds in Contour Detection
,”
Proceedings of the International Workshop on Image Processing: Real Time Edge and Motion Detection/Estimation
,
Rennes, France
,
Sept. 17–21
,
CCETT
, pp.
1
12
.
24.
Otsu
,
N.
,
1979
, “
“A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
25.
Bradley
,
D.
, and
Roth
,
G.
,
2007
, “
Adaptive Thresholding Using the Integral Image
,”
J. Graph. Tools
,
12
(
2
), pp.
13
21
.
26.
Yu
,
M.
,
Yeow
,
Y. J.
,
Lawrence
,
L.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2020
, “
Investigation of the Effects of Design and Process Parameters on the Mechanical Properties of Biodegradable Bone Scaffolds, Fabricated Using Pneumatic Microextrusion Process
,”
ASME 2020 International Mechanical Engineering Congress and Exposition (IMECE2020)
,
Portland, OR
,
Nov. 16–19
,
American Society of Mechanical Engineers
, Paper No. 24252.
27.
Zhao
,
D.
,
Yu
,
M.
,
Lawrence
,
L.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2020
, “
Investigation of the Influence of Consequential Design Parameters on the Mechanical Performance of Biodegradable Bone Scaffolds, Fabricated Using Pneumatic Micro-extrusion Additive Manufacturing Process
,”
ASME 2020 International Manufacturing Science and Engineering Conference (MSEC 2020)
,
Cincinnati, OH
,
June 22–26,
American Society of Mechanical Engineers,
Paper No. 8512.
28.
Yeow
,
Y. J.
,
Yu
,
M.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2020
, “
A Computational Fluid Dynamics (CFD) Study of Material Flow in Pneumatic MicroExtrusion (PME) Additive Manufacturing Process
,”
ASME 2020 International Mechanical Engineering Congress and Exposition (IMECE2020)
,
Portland, OR
,
Nov. 16–19
,
American Society of Mechanical Engineers
, Paper No. 24325.
29.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
A Computational Fluid Dynamics (CFD) Study of Material Transport and Deposition in Aerosol Jet Printing (AJP) Process
,”
ASME 2018 International Mechanical Engineering Congress & Exposition (IMECE 2018)
,
Pittsburgh, PA
,
Nov. 9–15
,
American Society of Mechanical Engineers
, Paper No. 87647.
30.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P.
, and
Poliks
,
M. D.
,
2021
, “
A Computational Fluid Dynamics Investigation of Pneumatic Atomization, Aerosol Transport, and Deposition in Aerosol Jet Printing Process
,”
ASME J. Micro- Nano-Manuf.
,
9
(
1
), p.
010903
.
31.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.
32.
Spoerk
,
M.
,
Gonzalez-Gutierrez
,
J.
,
Sapkota
,
J.
,
Schuschnigg
,
S.
, and
Holzer
,
C.
,
2018
, “
Effect of the Printing Bed Temperature on the Adhesion of Parts Produced by Fused Filament Fabrication
,”
Plast., Rubber Compos.
,
47
(
1
), pp.
17
24
.
33.
Jansen
,
E. J.
,
Sladek
,
R. E.
,
Bahar
,
H.
,
Yaffe
,
A.
,
Gijbels
,
M. J.
,
Kuijer
,
R.
,
Bulstra
,
S. K.
,
Guldemond
,
N. A.
,
Binderman
,
I.
, and
Koole
,
L. H.
,
2005
, “
Hydrophobicity as a Design Criterion for Polymer Scaffolds in Bone Tissue Engineering
,”
Biomaterials
,
26
(
21
), pp.
4423
4431
.
34.
Jenkins
,
M.
, and
Stamboulis
,
A.
,
2012
,
Durability and Reliability of Medical Polymers
,
Woodhead Publishing
,
Philadelphia, PA
.
35.
Brakke
,
K.
,
2020
,
Triply Periodic Minimal Surfaces
,
Department of Mathematics and Computer Science, Susquehanna University
,
Selinsgrove, PA
.
36.
Schoen
,
A. H.
,
1970
, “
Infinite Periodic Minimal Surfaces Without Self-Intersections, National Aeronautics and Space Administration (NASA)
,” Technical Note (NASA TN D-5541),
Washington, DC
.
37.
Piper
,
S.
,
2018
,
Maths Models: Triply Periodic Minimal Surface Structures Mega Pack
,
MyMiniFactory
,
London, UK
.
38.
Klemstine
,
C.
,
Abdelgaber
,
Y.
,
Lawrence
,
L.
,
Day
,
J. B.
,
Claudio
,
P. P.
, and
Salary
,
R. R.
,
2021
, “
Characterization of the Compressive Properties of Triply Periodic Minimal Surface PCL Scaffolds for Bone Tissue Engineering
,”
ASME International Mechanical Engineering Congress & Exposition (IMECE 2021)
,
Virtual Conference
,
Nov. 1–5
,
American Society of Mechanical Engineers
, Paper No. IMECE2021-72125.
39.
Hoffman
,
D.
,
Hoffman
,
J.
,
Weber
,
M.
,
Trazet
,
M.
,
Wohlgemuth
,
M.
,
Boix
,
E.
,
Callahan
,
M.
,
Thayer
,
E.
, and
Wei
,
F.
,
2019
,
The Scientific Graphics Project—Triply Periodic Level Surfaces
,
Mathematical Sciences Research Institute
,
Berkeley, CA
.
40.
Chaffins
,
A.
,
Yu
,
M.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2021
, “
Investigation of the Functional Properties of Additively-Fabricated Triply Periodic Minimal Surface-Based Bone Scaffolds for the Treatment of Osseous Fractures
,”
ASME 2021 International Manufacturing Science and Engineering Conference (MSEC 2021), Virtual Conference (Due to the COVID-19 Pandemic), Hosted by the University of Cincinnati
,
Cincinnati, OH
,
June 21–25
,
American Society of Mechanical Engineers
, Paper No. 2004.
41.
Salary
,
R.
,
2022
,
Advanced Manufacturing for Bone Tissue Engineering and Regenerative Medicine
,
IntechOpen
,
London, UK
, p.
304
.
You do not currently have access to this content.