Abstract

Aluminum honeycomb has been highlighted in aeronautics and astronautics in the form of the sandwich structure, but defects are easily generated during machining. Ultrasonic cutting for honeycomb material has received growing attention over the past years for improved machining quality and efficiency. In order to support the industrial application of the ultrasonic cutting for aluminum honeycomb by disc cutter, a finite element (FE) model is established and experimental investigations are conducted to study the influencing factors of the machining quality. The proposed FE model is verified by the comparison of cutting forces obtained from simulations and experiments. Based on the FE model and experiments, influences of tool orientation precisions, including lead angle and runout of disc cutter, are analyzed first. Moreover, cutting force, honeycomb morphology, the stress in the cutting zone, and cell wall deformation at different cutting parameters are investigated. Results show that the lead angle should be set as a slightly positive value, and the axial runout of the disc cutter should be controlled to an extremely small value to avoid machining defects. Meanwhile, the cutting forces decrease significantly with the application of the ultrasonic vibration and increase with the increases in the feed speed and the cutting depth. Therefore, a well-machined surface can be obtained by applying ultrasonic vibration, cutting at a lower feed speed, and a smaller cutting depth.

References

1.
Qiu
,
K.
,
Ming
,
W.
,
Shen
,
L.
,
An
,
Q.
, and
Chen
,
M.
,
2017
, “
Study on the Cutting Force in Machining of Aluminum Honeycomb Core Material
,”
Compos. Struct.
,
164
, pp.
58
67
.
2.
He
,
W.
,
Lu
,
S.
,
Yi
,
K.
,
Wang
,
S.
,
Sun
,
G.
, and
Hu
,
Z.
,
2019
, “
Residual Flexural Properties of CFRP Sandwich Structures With Aluminum Honeycomb Cores After Low-Velocity Impact
,”
Int. J. Mech. Sci.
,
161–162
, p.
105026
.
3.
Hu
,
Q.
,
Lu
,
G.
,
Hameed
,
N.
, and
Tse
,
K. M.
,
2022
, “
Dynamic Compressive Behaviour of Shear Thickening Fluid-Filled Honeycomb
,”
Int. J. Mech. Sci.
,
229
, p.
107493
.
4.
Bitzer
,
T.
,
1997
,
Honeycomb Technology
,
Springer Netherlands
,
Dordrecht
.
5.
Yip-Hoi
,
D.
,
Gill
,
D.
,
Gahan
,
J.
,
Travis
,
G.
, and
MacKaay
,
L.
,
2019
, “
Material Stiffness and Cutting Parameters for Honeycomb Aluminum Sandwich Panel: A Comparison With Bulk Material
,”
Procedia Manuf.
,
34
, pp.
385
392
.
6.
An
,
Q.
,
Dang
,
J.
,
Ming
,
W.
,
Qiu
,
K.
, and
Chen
,
M.
,
2019
, “
Experimental and Numerical Studies on Defect Characteristics During Milling of Aluminum Honeycomb Core
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031006
.
7.
Makich
,
H.
,
Nouari
,
M.
, and
Jaafar
,
M.
,
2022
, “
Surface Integrity Quantification in Machining of Aluminum Honeycomb Structure
,”
Procedia CIRP
,
108
, pp.
693
697
.
8.
Zarrouk
,
T.
,
Salhi
,
J. E.
,
Atlati
,
S.
,
Nouari
,
M.
,
Salhi
,
M.
, and
Salhi
,
N.
,
2022
, “
Modeling and Numerical Simulation of the Chip Formation Process When Machining Nomex
,”
Environ. Sci. Pollut. Res.
,
29
(
1
), pp.
98
105
.
9.
Zarrouk
,
T.
,
Nouari
,
M.
,
Salhi
,
J. E.
,
Makich
,
H.
,
Salhi
,
M.
,
Atlati
,
S.
, and
Salhi
,
N.
,
2022
, “
Optimization of the Milling Process for Aluminum Honeycomb Structures
,”
Int. J. Adv. Manuf. Technol.
,
119
(
7–8
), pp.
4733
4744
.
10.
Wang
,
Y.
,
Gan
,
Y.
,
Liu
,
H.
,
Han
,
L.
,
Wang
,
J.
, and
Liu
,
K.
,
2020
, “
Surface Quality Improvement in Machining an Aluminum Honeycomb by Ice Fixation
,”
Chinese J. Mech. Eng.
,
33
(
1
), p.
20
.
11.
Wang
,
F.
,
Liu
,
J.
,
Li
,
L.
, and
Shu
,
Q.
,
2017
, “
Green Machining of Aluminum Honeycomb Treated Using Ice Fixation in Cryogenic
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
943
952
.
12.
Wang
,
Y.
,
Kang
,
R.
,
Dong
,
Z.
,
Wang
,
X.
,
Huo
,
D.
, and
Zhang
,
X.
,
2021
, “
A Novel Method of Blade-Inclined Ultrasonic Cutting Nomex Honeycomb Core With Straight Blade
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041012
.
13.
Mu
,
D.
,
Hu
,
X.
,
Yu
,
H.
, and
Yu
,
B.
,
2021
, “
Investigation of Ultrasonic-Assisted CNC Cutting of Honeycomb Cores
,”
Int. J. Adv. Manuf. Technol.
,
117
(
3–4
), pp.
1275
1286
.
14.
Hu
,
X. P.
,
Yu
,
B. H.
,
Li
,
X. Y.
, and
Chen
,
N. C.
,
2017
, “
Research on Cutting Force Model of Triangular Blade for Ultrasonic Assisted Cutting Honeycomb Composites
,”
Procedia CIRP
,
66
, pp.
159
163
.
15.
Sun
,
J.
,
Dong
,
Z.
,
Wang
,
X.
,
Wang
,
Y.
,
Qin
,
Y.
, and
Kang
,
R.
,
2020
, “
Simulation and Experimental Study of Ultrasonic Cutting for Aluminum Honeycomb by Disc Cutter
,”
Ultrasonics
,
103
, p.
106102
.
16.
Sun
,
J.
,
Kang
,
R.
,
Qin
,
Y.
,
Wang
,
Y.
,
Feng
,
B.
, and
Dong
,
Z.
,
2021
, “
Simulated and Experimental Study on the Ultrasonic Cutting Mechanism of Aluminum Honeycomb by Disc Cutter
,”
Compos. Struct.
,
275
, p.
114431
.
17.
Ahmad
,
S.
,
Zhang
,
J.
,
Feng
,
P.
,
Yu
,
D.
, and
Wu
,
Z.
,
2020
, “
Experimental Study on Rotary Ultrasonic Machining (RUM) Characteristics of Nomex Honeycomb Composites (NHCs) by Circular Knife Cutting Tools
,”
J. Manuf. Process.
,
58
, pp.
524
535
.
18.
Wang
,
Y.
,
Kang
,
R.
,
Qin
,
Y.
,
Meng
,
Q.
, and
Dong
,
Z.
,
2021
, “
Effects of Inclination Angles of Disc Cutter on Machining Quality of Nomex Honeycomb Core in Ultrasonic Cutting Front
,”
Mech. Eng.
,
16
(
2
), pp.
285
297
.
19.
Jaafar
,
M.
,
Nouari
,
M.
,
Makich
,
H.
, and
Moufki
,
A.
,
2021
, “
3D Numerical Modeling and Experimental Validation of Machining Nomex® Honeycomb Materials
,”
Int. J. Adv. Manuf. Technol.
,
115
(
9–10
), pp.
2853
2872
.
20.
Jaafar
,
M.
,
Atlati
,
S.
,
Makich
,
H.
,
Nouari
,
M.
,
Moufki
,
A.
, and
Julliere
,
B.
,
2017
, “
A 3D FE Modeling of Machining Process of Nomex® Honeycomb Core: Influence of the Cell Structure Behaviour and Specific Tool Geometry
,”
Procedia CIRP
,
58
, pp.
505
510
.
21.
Jiang
,
J.
, and
Liu
,
Z.
,
2021
, “
Formation Mechanism of Tearing Defects in Machining Nomex Honeycomb Core
,”
Int. J. Adv. Manuf. Technol.
,
112
(
11–12
), pp.
3167
3176
.
22.
Giglio
,
M.
,
Manes
,
A.
, and
Gilioli
,
A.
,
2012
, “
Investigations on Sandwich Core Properties Through an Experimental-Numerical Approach
,”
Compos. Part B Eng.
,
43
(
2
), pp.
361
374
.
23.
Wang
,
B.
,
Liu
,
Z.
,
Song
,
Q.
,
Wan
,
Y.
, and
Ren
,
X.
,
2019
, “
A Modified Johnson-Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011012
.
24.
Sagar
,
C. K.
,
Priyadarshini
,
A.
,
Gupta
,
A. K.
,
Kumar
,
T.
, and
Saxena
,
S.
,
2021
, “
An Alternate Approach to SHPB Tests to Compute Johnson-Cook Material Model Constants for 97 WHA at High Strain Rates and Elevated Temperatures Using Machining Tests
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021004
.
25.
Zhou
,
H.
,
Zhao
,
M.
,
Ma
,
Z.
,
Zhang
,
D. Z.
, and
Fu
,
G.
,
2020
, “
Sheet and Network Based Functionally Graded Lattice Structures Manufactured by Selective Laser Melting: Design, Mechanical Properties, and Simulation
,”
Int. J. Mech. Sci.
,
175
, p.
105480
.
26.
Liu
,
J.
,
Bai
,
Y.
, and
Xu
,
C.
,
2014
, “
Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011010
.
27.
Su
,
H.
,
2013
,
Research on the FLD and Uniaxial Tensile Behaviour of 5A02 Aluminium Alloy
,
Harbin Institute of Technology
,
Harbin, China
.
28.
Zeng
,
R.
,
Ma
,
F.
,
Huang
,
L.
, and
Li
,
J.
,
2015
, “
Investigation on Spinnability of Profiled Power Spinning of Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
535
548
.
29.
Mahabunphachai
,
S.
, and
Koç
,
M.
,
2010
, “
Investigations on Forming of Aluminum 5052 and 6061 Sheet Alloys at Warm Temperatures
,”
Mater. Des.
,
31
(
5
), pp.
2422
2434
.
30.
Dewang
,
Y.
,
Hora
,
M. S.
, and
Panthi
,
S. K.
,
2015
, “
Prediction of Crack Location and Propagation in Stretch Flanging Process of Aluminum Alloy AA-5052 Sheet Using FEM Simulation
,”
Trans. Nonferrous Met. Soc. China
,
25
(
7
), pp.
2308
2320
.
31.
Niu
,
J.
,
Zhu
,
X.
,
Kang
,
R.
,
Wang
,
Y.
, and
Dong
,
Z.
,
2017
, “
Experimental Research on Ultrasonic Cutting Honeycomb Cores by Disc Cutter
,”
Diam. Abrasives Eng.
,
37
(
3
), pp.
62
68
.
32.
Vakilinejad
,
M.
,
Olabi
,
A.
,
Gibaru
,
O.
, and
Botton
,
B.
,
2020
, “
Geometrical Error Improvement of Aramid Honeycomb Workpieces in Robot-Based Triangular Knife Ultrasonic Cutting Process
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1–2
), pp.
523
541
.
33.
Ke
,
Y.
, and
Liu
,
G.
,
2005
, “
Attractive Fixture System Based on Magnetic Field and Friction Force for Numerically Controlled Machining of Paper Honeycomb Core
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
901
906
.
34.
Ahmad
,
S.
,
Zhang
,
J.
,
Feng
,
P.
,
Yu
,
D.
,
Wu
,
Z.
, and
Ke
,
M.
,
2020
, “
Processing Technologies for Nomex Honeycomb Composites (NHCs): A Critical Review
,”
Compos. Struct.
,
250
, p.
112545
.
You do not currently have access to this content.