Abstract

Defects, such as pores and cracks, can be found in parts fabricated by powder-bed additive manufacturing techniques. The origin of certain defects, such as some voids, can be linked to initial powder quality, which makes it an important factor in the process. Powders used in additive manufacturing processes are produced by different methods such as gas atomization (GA), plasma atomization (PA), and plasma rotating electrode process (PREP); each gives different powder quality. In this study, two different Al2024 powders, produced by electrode induction GA and PREP techniques, were used to investigate the effect of powder characteristics on defect formation during electron beam melting process (EBM). Powders were first characterized by using Hall flowmeter funnel and scanning electron microscope (SEM); then, the EBM process was carried out, and finally, samples were examined by density measurement using Archimedes method, SEM analysis, and tensile test. PREP powder showed higher levels of sphericity and surface smoothness without attached satellites. Consequently, a higher apparent density and decreased flowing time were achieved in PREP powder. Moreover, gas-induced internal pores were observed in GA particles. The results also revealed the average relative density of 96.7% and 99.4% for the parts built by GA and PREP powders, respectively. SEM micrographs confirmed the results of density measurement of the fabricated parts and showed higher degrees of both spherical and irregular-shaped pores in samples built by GA powder. Additionally, they showed deprived mechanical properties due to the higher porosity contents which can form stress-concentrated areas.

References

1.
ASTM52900-15, I.
,
2015
,
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,
ASTM International
,
West Conshohocken, PA
.
2.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B: Eng.
,
143
, pp.
172
196
.
3.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
4.
Hashmi
,
S.
,
2014
,
Comprehensive Materials Processing
, 1st ed.,
Elsevier
,
New York
.
5.
Kenevisi
,
M. S.
, and
Lin
,
F.
,
2020
, “
Selective Electron Beam Melting of High Strength Al2024 Alloy; Microstructural Characterization and Mechanical Properties
,”
J. Alloys Compd.
,
843
, p.
155866
.
6.
Cooke
,
A.
, and
Slotwinski
,
J.
,
2012
, “
Properties of Metal Powders for Additive Manufacturing: A Review of the State of the Art of Metal Powder Property Testing
,” NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD.
7.
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2007
, “
Parametric Analysis of the Selective Laser Melting Process
,”
Appl. Surf. Sci.
,
253
(
19
), pp.
8064
8069
.
8.
Li
,
R.
,
Shi
,
Y.
,
Wang
,
Z.
,
Wang
,
L.
,
Liu
,
J.
, and
Jiang
,
W.
,
2010
, “
Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4350
4356
.
9.
Yang
,
S.
, and
Evans
,
J. R. G.
,
2007
, “
Metering and Dispensing of Powder; the Quest for New Solid Freeforming Techniques
,”
Powder Technol.
,
178
(
1
), pp.
56
72
.
10.
Prashanth
,
K. G.
,
Shakur Shahabi
,
H.
,
Attar
,
H.
,
Srivastava
,
V. C.
,
Ellendt
,
N.
,
Uhlenwinkel
,
V.
,
Eckert
,
J.
, and
Scudino
,
S.
,
2015
, “
Production of High Strength Al85Nd8Ni5Co2 Alloy by Selective Laser Melting
,”
Addit. Manuf.
,
6
, pp.
1
5
.
11.
Dai
,
D.
, and
Gu
,
D.
,
2014
, “
Thermal Behavior and Densification Mechanism During Selective Laser Melting of Copper Matrix Composites: Simulation and Experiments
,”
Mater. Des.
,
55
, pp.
482
491
.
12.
Körner
,
C.
,
2016
, “
Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review
,”
Int. Mater. Rev.
,
61
(
5
), pp.
361
377
.
13.
Kempen
,
K.
,
Thijs
,
L.
,
Yasa
,
E.
,
Badrossamay
,
M.
, and
Kruth
,
J.-P.
,
2011
, “
Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg
,”
22nd Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
.
14.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
,
Yadroitsava
,
I.
,
Johansson
,
S.
, and
Smurov
,
I.
,
2013
, “
Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track From Metallic Powder
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
606
613
.
15.
Luisa
,
S.
,
Contuzzi
,
N.
,
Angelastro
,
A.
, and
Domenico
,
A.
,
2010
, “
Capabilities and Performances of the Selective Laser Melting Process
,” New Trends in Technologies: Devices, Computer, Communication and Industrial Systems.
16.
Schwarzenböck
,
E.
,
Ludwig
,
I.
,
Schupp
,
N.
,
Palm
,
F.
, and
Witt
,
G.
,
2017
, “
Investigations of Aging Behaviour for Aluminium Powders During an Atmosphere Simulation of the LBM Process AU—Bauer, Dominik M
,”
Powder Metall.
,
60
(
3
), pp.
175
183
.
17.
Spierings
,
A. B.
,
Voegtlin
,
M.
,
Bauer
,
T.
, and
Wegener
,
K.
,
2016
, “
Powder Flowability Characterisation Methodology for Powder-Bed-Based Metal Additive Manufacturing
,”
Prog. Addit. Manuf.
,
1
(
1
), pp.
9
20
.
18.
Jeon
,
T. J.
,
Hwang
,
T. W.
,
Yun
,
H. J.
,
VanTyne
,
C. J.
, and
Moon
,
Y. H.
,
2018
, “
Control of Porosity in Parts Produced by a Direct Laser Melting Process
,”
Appl. Sci.
,
8
(
12
), p.
2573
.
19.
Anderson
,
I. E.
,
White
,
E. M. H.
, and
Dehoff
,
R.
,
2018
, “
Feedstock Powder Processing Research Needs for Additive Manufacturing Development
,”
Curr. Opin. Solid State Mater. Sci.
,
22
(
1
), pp.
8
15
.
20.
Sun
,
P.
,
Fang
,
Z. Z.
,
Zhang
,
Y.
, and
Xia
,
Y.
,
2017
, “
Review of the Methods for Production of Spherical Ti and Ti Alloy Powder
,”
JOM
,
69
(
10
), pp.
1853
1860
.
21.
Dietrich
,
S.
,
Wunderer
,
M.
,
Huissel
,
A.
, and
Zaeh
,
M. F.
,
2016
, “
A New Approach for a Flexible Powder Production for Additive Manufacturing
,”
Proc. Manuf.
,
6
, pp.
88
95
.
22.
Chen
,
G.
,
Zhao
,
S. Y.
,
Tan
,
P.
,
Wang
,
J.
,
Xiang
,
C. S.
, and
Tang
,
H. P.
,
2018
, “
A Comparative Study of Ti-6Al-4 V Powders for Additive Manufacturing by Gas Atomization, Plasma Rotating Electrode Process and Plasma Atomization
,”
Powder Technol.
,
333
, pp.
38
46
.
23.
Cunningham
,
R.
,
Nicolas
,
A.
,
Madsen
,
J.
,
Fodran
,
E.
,
Anagnostou
,
E.
,
Sangid
,
M. D.
, and
Rollett
,
A. D.
,
2017
, “
Analyzing the Effects of Powder and Post-Processing on Porosity and Properties of Electron Beam Melted Ti-6Al-4 V
,”
Mater. Res. Lett.
,
5
(
7
), pp.
516
525
.
24.
Iebba
,
M.
,
Astarita
,
A.
,
Mistretta
,
D.
,
Colonna
,
I.
,
Liberini
,
M.
,
Scherillo
,
F.
,
Pirozzi
,
C.
,
Borrelli
,
R.
,
Franchitti
,
S.
, and
Squillace
,
A.
,
2017
, “
Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4 V Components
,”
J. Mater. Eng. Perform.
,
26
(
8
), pp.
4138
4147
.
25.
Baskoro
,
A. S.
,
Supriadi
,
S.
, and
Dharmanto
,
2019
, “
Review on Plasma Atomizer Technology for Metal Powder
,”
MATEC Web Conf.
,
269
, p.
05004
.
26.
Lawley
,
A.
,
2001
,”
Atomization, in Encyclopedia of Materials: Science and Technology
,
K. H. J.
Buschow
, ed.,
Elsevier
,
Oxford
, pp.
387
392
.
27.
Liu
,
Y.
,
Han
,
Z. U.
,
Wang
,
Q. X.
,
Liang
,
S. J.
, and
Zhang
,
P. X.
,
2016
,
Rotating Electrode Preparing Micro Spherical Metal Powder and Method of Rotating Electrode
, China Patent, CN106670487A, filed December 19, 2016, and issued May 17, 2017.
28.
Rabin
,
B. H.
,
Smolik
,
G. R.
, and
Korth
,
G. E.
,
1990
, “
Characterization of Entrapped Gases in Rapidly Solidified Powders
,”
Mater. Sci. Eng. A
,
124
(
1
), pp.
1
7
.
29.
Zhang
,
B.
,
Li
,
Y.
, and
Bai
,
Q.
,
2017
, “
Defect Formation Mechanisms in Selective Laser Melting: A Review
,”
Chin. J. Mech. Eng.
,
30
(
3
), pp.
515
527
.
30.
Read
,
N.
,
Wang
,
W.
,
Essa
,
K.
, and
Attallah
,
M. M.
,
2015
, “
Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development
,”
Mater. Des.
,
65
, pp.
417
424
.
31.
Uddin
,
S. Z.
,
Murr
,
L. E.
,
Terrazas
,
C. A.
,
Morton
,
P.
,
Roberson
,
D. A.
, and
Wicker
,
R. B.
,
2018
, “
Processing and Characterization of Crack-Free Aluminum 6061 Using High-Temperature Heating in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
405
415
.
32.
Aboulkhair
,
N. T.
,
Simonelli
,
M.
,
Parry
,
L.
,
Ashcroft
,
I.
,
Tuck
,
C.
, and
Hague
,
R.
,
2019
, “
3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting
,”
Prog. Mater. Sci.
,
106
, p.
100578
.
33.
Mertens
,
A. I.
,
Delahaye
,
J.
, and
Lecomte-Beckers
,
J.
,
2017
, “
Fusion-Based Additive Manufacturing for Processing Aluminum Alloys: State-of-the-Art and Challenges
,”
Adv. Eng. Mater.
,
19
(
8
), p.
1700003
.
You do not currently have access to this content.