Abstract

3D-printed blocks with drop coating could work as diffraction gratings while the layer stepping serves as the grooves of the gratings. This paper reports 3D-printed diffraction gratings coated with different resins. A collimated laser with a wavelength of 520 nm passed through the gratings and generated diffraction patterns. Optical path differences and surface profiles of the samples were measured to analyze the mechanism of the diffraction phenomenon. The as-printed samples had a grating height of about 8 µm induced by layer stepping, which could not generate clear diffraction patterns because of too large optical path difference. After being coated with different resins on the surfaces, the printed samples generated diffraction patterns. We experimentally showed that the magnitude of optical path differences became close to the wavelength of the laser and that the diffraction phenomenon was mainly caused by the difference in the refractive indices between the as-printed part and the drop-coated part. This novel method enables low-cost 3D printers to fabricate diffractive optical elements for visible light.

References

1.
Katz
,
S.
,
Kaplan
,
N.
, and
Grossinger
,
I.
,
2018
, “
Using Diffractive Optical Elements: DOEs for Beam Shaping—Fundamentals and Applications
,”
Optik Photonik
,
13
(
4
), pp.
83
86
.
2.
Pang
,
H.
,
Yin
,
S.
,
Deng
,
Q.
,
Qiu
,
Q.
, and
Du
,
C.
,
2015
, “
A Novel Method for the Design of Diffractive Optical Elements Based on the Rayleigh-Sommerfeld Integral
,”
Opt. Lasers Eng.
,
70
, pp.
38
44
.
3.
Kämpfe
,
T.
,
Kley
,
E. B.
,
Tünnermann
,
A.
, and
Dannberg
,
P.
,
2007
, “
Design and Fabrication of Stacked, Computer Generated Holograms for Multicolor Image Generation
,”
Appl. Opt.
,
46
(
22
), pp.
5482
5488
.
4.
Herrera-Fernandez
,
J. M.
, and
Sanchez-Brea
,
L. M.
,
2011
, “
Double Diffractive Optical Element System for Near-Field Shaping
,”
Appl. Opt.
,
50
(
23
), pp.
4587
4593
.
5.
Qu
,
W.
,
Gu
,
H.
,
Tan
,
Q.
, and
Jin
,
G.
,
2015
, “
Precise Design of Two-Dimensional Diffractive Optical Elements for Beam Shaping
,”
Appl. Opt.
,
54
(
21
), pp.
6521
6525
.
6.
Bengtsson
,
J.
,
1997
, “
Design of Fan-Out Kinoforms in the Entire Scalar Diffraction Regime With an Optimal-Rotation-Angle Method
,”
Appl. Opt.
,
36
(
1321
), pp.
1
18
.
7.
Krasnaberski
,
A.
,
Miklyaev
,
Y.
,
Pikhulya
,
D.
,
Kleinschmidt
,
L.
,
Imgrunt
,
W.
,
Ivanenko
,
M.
, and
Lissotschenko
,
V.
,
2012
, “
Efficient Beam Splitting With Continuous Relief DOEs and Microlens Arrays
,”
Laser Resonators, Microresonators, and Beam Control XIV
,
San Francisco, CA
,
Feb. 6
, Vol. 8236, SPIE, pp.
55
61
8.
Jesacher
,
A.
,
Bernet
,
S.
, and
Ritsch-Marte
,
M.
,
2014
, “
Colour Hologram Projection With an SLM by Exploiting Its Full Phase Modulation Range
,”
Opt. Express
,
22
(
17
), p.
20530
.
9.
Wang
,
H.
,
Liu
,
Y.
,
Ruan
,
Q.
,
Liu
,
H.
,
Ng
,
R. J. H.
,
Tan
,
Y. S.
,
Wang
,
H.
,
Li
,
Y.
,
Qiu
,
C. W.
, and
Yang
,
J. K. W.
,
2019
, “
Off-Axis Holography With Uniform Illumination Via 3D Printed Diffractive Optical Elements
,”
Adv. Opt. Mater.
,
7
(
12
), pp.
1
9
.
10.
Hua
,
J.
,
Yi
,
D.
,
Qiao
,
W.
, and
Chen
,
L.
,
2020
, “
Multiview Holographic 3D Display Based on Blazed Fresnel DOE
,”
Opt. Commun.
,
472
, p.
125829
.
11.
Cheremkhin
,
P.
,
Evtikhiev
,
N.
,
Krasnov
,
V.
,
Rodin
,
V.
,
Rymov
,
D.
, and
Starikov
,
R.
,
2020
, “
Machine Learning Methods for Digital Holography and Diffractive Optics
,”
Procedia Comput. Sci.
,
169
(
2019
), pp.
440
444
.
12.
Palmer
,
C. H.
,
1956
, “
Diffraction Grating Anomalies II Coarse Gratings*
,”
J. Opt. Soc. Am.
,
46
(
1
), p.
50
.
13.
Harvey
,
J. E.
, and
Pfisterer
,
R. N.
,
2019
, “
Understanding Diffraction Grating Behavior: Including Conical Diffraction and Rayleigh Anomalies From Transmission Gratings
,”
Opt. Eng.
,
58
(
8
), p.
1
.
14.
Kologrivov
,
A. A.
,
Rupasov
,
A. A.
, and
Sklizkov
,
G. V.
,
2019
, “
Reconstruction of Continuous Soft X-Ray Spectra From Spectrograms Recorded Using a Transmission Diffraction Grating
,”
Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip.
,
916
, pp.
313
321
.
15.
Hofmann
,
F.
,
Short
,
M. P.
, and
Dennett
,
C. A.
,
2019
, “
Transient Grating Spectroscopy: An Ultrarapid, Nondestructive Materials Evaluation Technique
,”
MRS Bull.
,
44
(
5
), pp.
392
402
.
16.
Svetina
,
C.
,
Mankowsky
,
R.
,
Knopp
,
G.
,
Koch
,
F.
,
Seniutinas
,
G.
,
Rösner
,
B.
,
Kubec
,
A.
, et al
, “
Towards X-Ray Transient Grating Spectroscopy
,”
Opt. Lett.
,
44
(
3
), p.
574
.
17.
Shvyd'ko
,
Y.
,
2020
, “
Diffraction Gratings With Two-Orders-of-Magnitude Enhanced Dispersion Rates for Sub-MeV Resolution Soft X-Ray Spectroscopy
,”
J. Synchrotron Radiat.
,
27
(
5
), pp.
1227
1234
.
18.
Bonod
,
N.
, and
Neauport
,
J.
,
2016
, “
Diffraction Gratings: From Principles to Applications in High-Intensity Lasers
,”
Adv. Opt. Photonics
,
8
(
1
), pp.
156
199
.
19.
Alessi
,
D. A.
,
Rosso
,
P. A.
,
Nguyen
,
H. T.
,
Aasen
,
M. D.
,
Britten
,
J. A.
, and
Haefner
,
C.
,
2016
, “
Active Cooling of Pulse Compression Diffraction Gratings for High Energy, High Average Power Ultrafast Lasers
,”
Opt. Express
,
24
(
26
), pp.
30015
30023
.
20.
Xia
,
Q. K.
, and
Wang
,
D. N.
,
2022
, “
Optical Fiber Diffraction Gratings
,”
IEEE Photonics Technol. Lett.
,
34
(
3
), pp.
177
180
.
21.
Wei
,
H.
,
Qi
,
Z.
,
Fanyong
,
M.
, and
Lianqing
,
Z.
,
2021
, “
Single-Wavelength Tunable Erbium-Doped Fiber Laser Based on Electron Beam Lithography Inscribed Varied-Period Plane Diffraction Grating
,”
Opt. Laser Technol.
,
140
, p.
107064
.
22.
Lu
,
Z.
,
Wei
,
P.
,
Wang
,
C.
,
Jing
,
J.
,
Tan
,
J.
, and
Zhao
,
X.
,
2016
, “
Two-Degree-of-Freedom Displacement Measurement System Based on Double Diffraction Gratings
,”
Meas. Sci. Technol.
,
27
(
7
), p.
074012
.
23.
Shishova
,
M. V.
,
Odinokov
,
S. B.
,
Lushnikov
,
D. S.
, and
Zherdev
,
A. Y.
,
2018
, “
Methods for Analyzing Quality of Diffraction Gratings for Linear-Displacement Sensors
,”
J. Opt. Technol.
,
85
(
7
), p.
396
.
24.
Sałbut
,
L.
, and
Łuczak
,
S.
,
2021
, “
Concept of an In-Plane Displacement Sensor Based on Grating Interferometry With a Stepwise Change of Sensitivity
,”
Sensors
,
21
(
14
), p.
4894
.
25.
Purtov
,
J.
,
Rogin
,
P.
,
Verch
,
A.
,
Johansen
,
V. E.
, and
Hensel
,
R.
,
2019
, “
Nanopillar Diffraction Gratings by Two-Photon Lithography
,”
Nanomaterials
,
9
(
10
), p.
1495
.
26.
Sola
,
D.
,
Alamri
,
S.
,
Lasagni
,
A. F.
, and
Artal
,
P.
,
2019
, “
Fabrication and Characterization of Diffraction Gratings in Ophthalmic Polymers by Using UV Direct Laser Interference Patterning
,”
Appl. Surf. Sci.
,
476
, pp.
128
135
.
27.
Ushkov
,
A. A.
,
Verrier
,
I.
,
Kampfe
,
T.
, and
Jourlin
,
Y.
,
2020
, “
Subwavelength Diffraction Gratings With Macroscopic Moiré Patterns Generated Via Laser Interference Lithography
,”
Opt. Express
,
28
(
11
), pp.
16453
16468
.
28.
Jiang
,
S.
,
Park
,
C. S.
,
Lee
,
W. B.
,
Zhou
,
C.
, and
Lee
,
S. S.
,
2020
, “
Light-Driven Diffraction Grating Based on a Photothermal Actuator Incorporating Femtosecond Laser-Induced GO/rGO
,”
Opt. Express
,
28
(
26
), pp.
39552
39562
.
29.
Machida
,
M.
,
Nakajima
,
Y.
,
Torres-Mapa
,
M. L.
,
Heinemann
,
D.
,
Heisterkamp
,
A.
, and
Terakawa
,
M.
,
2018
, “
Shrinkable Silver Diffraction Grating Fabricated Inside a Hydrogel Using 522-nm Femtosecond Laser
,”
Sci. Rep.
,
8
(
1
), p.
187
.
30.
Xiong
,
Z.
,
Poudel
,
A.
,
Narkar
,
A. R.
,
Zhang
,
Z.
,
Kunwar
,
P.
,
Henderson
,
J. H.
, and
Soman
,
P.
,
2022
, “
Femtosecond Laser Densification of Hydrogels to Generate Customized Volume Diffractive Gratings
,”
ACS Appl. Mater. Interfaces
,
14
(
25
), pp.
29377
29385
.
31.
Voronov
,
D. L.
,
Lum
,
P.
,
Naulleau
,
P.
,
Gullikson
,
E. M.
,
Fedorov
,
A. V.
, and
Padmore
,
H. A.
,
2016
, “
X-Ray Diffraction Gratings: Precise Control of Ultra-Low Blaze Angle Via Anisotropic Wet Etching
,”
Appl. Phys. Lett.
,
109
(
4
), pp.
1
5
.
32.
Seifert
,
J. M.
,
Hernandez-Cardoso
,
G. G.
,
Koch
,
M.
, and
Castro-Camus
,
E.
,
2020
, “
Terahertz Beam Steering Using Active Diffraction Grating Fabricated by 3D Printing
,”
Opt. Express
,
28
(
15
), pp.
21737
21744
.
33.
Vallejo-Melgarejo
,
L. D.
,
Reifenberger
,
R. G.
,
Newell
,
B. A.
,
Narváez-Tovar
,
C. A.
, and
Garcia-Bravo
,
J. M.
,
2019
, “
Characterization of 3D-Printed Lenses and Diffraction Gratings Made by DLP Additive Manufacturing
,”
Rapid Prototyp. J.
,
25
(
10
), pp.
1684
1694
.
34.
Pedrotti
,
F. L.
,
Pedrotti
,
L. M.
, and
Pedrotti
,
L. S.
,
2017
,
Introduction to Optics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.